# Path Configuration from tools.preprocess import * # Processing context trait = "Lactose_Intolerance" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Lactose_Intolerance/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Lactose_Intolerance/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Lactose_Intolerance/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Lactose_Intolerance/cohort_info.json" # 1. From the subdirectories list, select stomach cancer data since lactose intolerance # involves digestive system, particularly stomach and small intestine cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Stomach_Cancer_(STAD)') # 2. Get the clinical and genetic data file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Identify candidate demographic columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Load clinical data to preview columns using helper function clinical_file_path, _ = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, "STAD")) clinical_df = pd.read_csv(clinical_file_path, index_col=0) # Extract and preview age columns age_preview = preview_df(clinical_df[candidate_age_cols]) print("Age columns preview:") print(age_preview) # Extract and preview gender columns gender_preview = preview_df(clinical_df[candidate_gender_cols]) print("\nGender columns preview:") print(gender_preview) # 1. From the subdirectories list, select stomach cancer data since lactose intolerance # involves digestive system, particularly stomach and small intestine cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Stomach_Cancer_(STAD)') # 2. Get the clinical and genetic data file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Define candidate columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Get proper file paths for STAD cohort cohort_dir = os.path.join(tcga_root_dir, "STAD") clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) # Read with more robust parsing clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') age_preview = {} for col in candidate_age_cols: if col in clinical_df.columns: age_preview[col] = clinical_df[col].head().tolist() gender_preview = {} for col in candidate_gender_cols: if col in clinical_df.columns: gender_preview[col] = clinical_df[col].head().tolist() print("Age columns preview:") print(age_preview) print("\nGender columns preview:") print(gender_preview) # Since TCGA data doesn't contain suitable information about lactose intolerance, # we need to skip this trait and record this decision is_usable = validate_and_save_cohort_info( is_final=False, cohort="TCGA_STAD", info_path=json_path, is_gene_available=True, # Gene expression data is available is_trait_available=False, # But no suitable trait information is_biased=None, df=None, note="TCGA datasets focus on cancer diagnoses and do not contain reliable information about lactose intolerance. Cannot use stomach cancer status as proxy since there's no established relationship between these conditions." ) print("Lactose intolerance trait cannot be studied using TCGA data.")