# Path Configuration from tools.preprocess import * # Processing context trait = "Mitochondrial_Disorders" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Mitochondrial_Disorders/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Mitochondrial_Disorders/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Mitochondrial_Disorders/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Mitochondrial_Disorders/cohort_info.json" # Define candidate columns candidate_age_cols = [] candidate_gender_cols = [] # Since no column data was provided as output from previous step, # we cannot preview any data. Return empty dictionary preview_data = {} # Select the PCPG directory which may contain relevant data for mitochondrial disorders cohort_dir = os.path.join(tcga_root_dir, "TCGA_Pheochromocytoma_Paraganglioma_(PCPG)") # Get paths to clinical and genetic data files clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # Load the clinical and genetic data clinical_df = pd.read_table(clinical_file_path, index_col=0) genetic_df = pd.read_table(genetic_file_path, index_col=0) # Print clinical data columns for examination print("Clinical data columns:") print(clinical_df.columns) # Identify candidate columns for age and gender candidate_age_cols = ['age_at_initial_pathologic_diagnosis'] candidate_gender_cols = ['gender'] # Get correct file paths cohort_dir = os.path.join(tcga_root_dir, "TCGA_Pheochromocytoma_Paraganglioma_(PCPG)") clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) # Load clinical data clinical_df = pd.read_csv(clinical_file_path, sep="\t", index_col=0) # Extract and preview age columns age_preview = {} for col in candidate_age_cols: if col in clinical_df.columns: age_preview[col] = clinical_df[col].head(5).tolist() print("Age columns preview:", age_preview) # Extract and preview gender columns gender_preview = {} for col in candidate_gender_cols: if col in clinical_df.columns: gender_preview[col] = clinical_df[col].head(5).tolist() print("Gender columns preview:", gender_preview) # Assign age and gender column names based on inspection of available columns age_col = 'age_at_initial_pathologic_diagnosis' # Valid age values present gender_col = 'gender' # Valid gender values present # Print selected column names print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # 1. Extract and standardize clinical features selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col) # 2. Normalize gene symbols in genetic data normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_genetic_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Check for bias in trait and demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate and save cohort info note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}" is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) print(f"Linked data saved to {out_data_file}") print("Shape of final linked data:", linked_data.shape) else: print("Dataset was found to be unusable and was not saved")