# Path Configuration from tools.preprocess import * # Processing context trait = "Ocular_Melanomas" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Ocular_Melanomas/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Ocular_Melanomas/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Ocular_Melanomas/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Ocular_Melanomas/cohort_info.json" # 1. Select the directory for Ocular Melanomas cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Ocular_melanomas_(UVM)') # 2. Get file paths for clinical and genetic data clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load both files as pandas dataframes clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0) genetic_df = pd.read_csv(genetic_file_path, sep='\t', index_col=0) # 4. Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Mark data as available is_gene_available = True if len(genetic_df) > 0 else False is_trait_available = True if len(clinical_df) > 0 else False # Initial validation validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Identify candidate demographic columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Get clinical data path clinical_file_path = os.path.join(tcga_root_dir, "UVM", "UVM.GDC_phenotype.tsv") # Read clinical data clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0) # Preview age columns age_preview = {} for col in candidate_age_cols: if col in clinical_df.columns: age_preview[col] = clinical_df[col].head().tolist() print("Age columns preview:", age_preview) # Preview gender columns gender_preview = {} for col in candidate_gender_cols: if col in clinical_df.columns: gender_preview[col] = clinical_df[col].head().tolist() print("Gender columns preview:", gender_preview) # Define candidate demographic columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis'] candidate_gender_cols = ['gender'] print("\nCandidate age columns:", candidate_age_cols) print("Candidate gender columns:", candidate_gender_cols) # Preview the data if len(candidate_age_cols) > 0: age_data = clinical_df[candidate_age_cols] print("\nAge column previews:") print(preview_df(age_data)) if len(candidate_gender_cols) > 0: gender_data = clinical_df[candidate_gender_cols] print("\nGender column previews:") print(preview_df(gender_data)) # Select the age column - age_at_initial_pathologic_diagnosis has valid numerical values age_col = 'age_at_initial_pathologic_diagnosis' # Select the gender column - gender has valid gender values gender_col = 'gender' # Print chosen columns print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # Re-define demographic columns age_col = 'age_at_initial_pathologic_diagnosis' gender_col = 'gender' # 1. Extract and standardize clinical features trait_col = trait.replace("_", " ") selected_clinical_df = tcga_select_clinical_features(clinical_df, trait_col, age_col, gender_col) # 2. Normalize gene symbols in genetic data normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_genetic_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical_df.to_csv(out_clinical_data_file) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait_col) # 5. Check for bias in trait and demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait_col) # 6. Validate and save cohort info note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}" is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) print(f"Linked data saved to {out_data_file}") print("Shape of final linked data:", linked_data.shape) else: print("Dataset was found to be unusable and was not saved")