# Path Configuration from tools.preprocess import * # Processing context trait = "Prostate_Cancer" cohort = "GSE178631" # Input paths in_trait_dir = "../DATA/GEO/Prostate_Cancer" in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE178631" # Output paths out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE178631.csv" out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE178631.csv" out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE178631.csv" json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene expression data availability check # Based on background info mentioning "gene expression data" and the use case of RNeasy/miRNeasy kits is_gene_available = True # 2.1 Feature availability analysis # For trait: Use ISUP grade group (Feature 3) as binary indicator of tumor aggressiveness trait_row = 3 # Age and gender data not found in characteristics age_row = None gender_row = None # 2.2 Data type conversion functions def convert_trait(value): if pd.isna(value): return None # Extract numeric grade after colon grade = value.split(': ')[1] if grade.isdigit(): # Convert to binary: ISUP grade >=3 indicates more aggressive disease return 1 if int(grade) >= 3 else 0 return None def convert_age(value): return None # Not used def convert_gender(value): return None # Not used # 3. Save metadata about data availability validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Extract clinical features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted data print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the identifier pattern "ILMN_", these are Illumina probes # rather than direct gene symbols, so mapping will be required requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Try searching for ID patterns in all columns print("All column names:", gene_metadata.columns.tolist()) print("\nPreview first few rows of each column to locate numeric IDs:") for col in gene_metadata.columns: sample_values = gene_metadata[col].dropna().head().tolist() print(f"\n{col}:") print(sample_values) # Inspect raw file to see unfiltered annotation format import gzip print("\nRaw SOFT file preview:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: header = [] for i, line in enumerate(f): header.append(line.strip()) if i >= 10: # Preview first 10 lines break print('\n'.join(header)) # Identify mapping columns from annotation data # 'Probe_Id' matches the IDs in gene expression data # 'ILMN_Gene' contains the gene symbols to map to mapping_df = get_gene_mapping(gene_metadata, prob_col='Probe_Id', gene_col='ILMN_Gene') # Convert probe-level data to gene-level expression gene_data = apply_gene_mapping(gene_data, mapping_df) # Save raw gene expression data gene_data.to_csv(out_gene_data_file)