# Path Configuration from tools.preprocess import * # Processing context trait = "Prostate_Cancer" cohort = "GSE200879" # Input paths in_trait_dir = "../DATA/GEO/Prostate_Cancer" in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE200879" # Output paths out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE200879.csv" out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE200879.csv" out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE200879.csv" json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Background info mentions "Transcriptomics" so gene expression data should be available is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait (tumor vs normal) is in row 0 trait_row = 0 # No age data available age_row = None # No gender data available (typically all male in prostate cancer studies) gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): if pd.isna(x) or not isinstance(x, str): return None val = x.split(': ')[1].lower() if ': ' in x else x.lower() if 'tumor' in val: return 1 elif 'normal' in val: return 0 return None def convert_age(x): # Not used since age data not available return None def convert_gender(x): # Not used since gender data not available return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Since trait_row is not None, extract clinical features selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # These appear to be custom identifiers starting with "GSHG" rather than standard human gene symbols # They will need to be mapped to proper gene symbols requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Try searching for ID patterns in all columns print("All column names:", gene_metadata.columns.tolist()) print("\nPreview first few rows of each column to locate numeric IDs:") for col in gene_metadata.columns: sample_values = gene_metadata[col].dropna().head().tolist() print(f"\n{col}:") print(sample_values) # Inspect raw file to see unfiltered annotation format import gzip print("\nRaw SOFT file preview:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: header = [] for i, line in enumerate(f): header.append(line.strip()) if i >= 10: # Preview first 10 lines break print('\n'.join(header)) # 1. Determine mapping columns - 'ID' column matches gene identifiers in expression data, # and 'Gene Symbol' contains the target gene symbols prob_col = 'ID' gene_col = 'Gene Symbol' # 2. Get gene mapping from annotation data mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col) # 3. Apply gene mapping and convert probe values to gene expression gene_data = apply_gene_mapping(gene_data, mapping_df) # Preview result print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # 1. Normalize gene symbols using NCBI synonym information and save try: gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) except Exception as e: print(f"Warning: Gene symbol normalization failed, using original mapped gene symbols. Error: {e}") # 2. Link clinical and gene expression data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort information # If gene normalization failed but the data is otherwise usable, note this in metadata note = "Contains gene expression data with custom probe-to-gene mapping." if 'GSHG' in str(gene_data.index[:5]) else "Contains normalized gene expression data." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save processed data if usable if is_usable: linked_data.to_csv(out_data_file)