# Path Configuration from tools.preprocess import * # Processing context trait = "Prostate_Cancer" cohort = "GSE201805" # Input paths in_trait_dir = "../DATA/GEO/Prostate_Cancer" in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE201805" # Output paths out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE201805.csv" out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE201805.csv" out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE201805.csv" json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # Check gene expression data availability # Based on series title and summary, this is a gene expression study is_gene_available = True # Track trait data availability # Treatment arm can indicate prostate cancer severity/response trait_row = 5 # randomization arm row def convert_trait(value): if pd.isna(value): return None value = value.split(": ")[-1].strip() # Treatment arm indicates disease severity/intervention status return 1 if value == "Treatment" else 0 # Track age data availability age_row = 3 # age row def convert_age(value): if pd.isna(value): return None try: # Extract numeric age value after colon age = int(value.split(": ")[-1].strip()) return age except: return None # Track gender data availability # This is a prostate cancer study - all subjects are male gender_row = None # gender not needed since all male def convert_gender(value): return 1 # all male # Save metadata about data availability validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # Extract clinical features using library function clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of extracted clinical features:") print(preview) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The identifiers appear to be numeric IDs (e.g. 2315554, 2315633, etc.) # These are not standard human gene symbols which are typically alphanumeric (e.g. BRCA1, TP53) # Therefore gene mapping will be required requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Try searching for ID patterns in all columns print("All column names:", gene_metadata.columns.tolist()) print("\nPreview first few rows of each column to locate numeric IDs:") for col in gene_metadata.columns: sample_values = gene_metadata[col].dropna().head().tolist() print(f"\n{col}:") print(sample_values) # Inspect raw file to see unfiltered annotation format import gzip print("\nRaw SOFT file preview:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: header = [] for i, line in enumerate(f): header.append(line.strip()) if i >= 10: # Preview first 10 lines break print('\n'.join(header)) # From the preview, 'ID' column matches numeric identifiers in gene expression data # 'gene_assignment' contains gene symbols between '//' delimiters # Get probe-to-gene mapping mapping_data = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment') # Apply mapping to convert probe-level to gene-level expression gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview results print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few gene symbols and their expression values:") print(gene_data.head()) # Save probe-level gene data gene_data.to_csv(out_gene_data_file) # Load clinical data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # Link clinical and probe-level gene data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Record cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Contains probe-level gene expression data and clinical features. Gene symbol mapping was not successful." ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)