# Path Configuration from tools.preprocess import * # Processing context trait = "Red_Hair" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Red_Hair/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Red_Hair/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Red_Hair/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Red_Hair/cohort_info.json" # 1. Find directory for melanoma data - most relevant to red hair as both involve melanin pathways selected_dir = 'TCGA_Melanoma_(SKCM)' cohort_dir = os.path.join(tcga_root_dir, selected_dir) # 2. Get file paths for clinical and genetic data clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Record data availability is_gene_available = len(genetic_df.columns) > 0 is_trait_available = len(clinical_df.columns) > 0 validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Identify candidate columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Load clinical data clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir) clinical_df = pd.read_csv(clinical_file_path, index_col=0) # Extract and preview age columns age_preview = clinical_df[candidate_age_cols].head() print("Age columns preview:", preview_df(age_preview)) # Extract and preview gender columns gender_preview = clinical_df[candidate_gender_cols].head() print("Gender columns preview:", preview_df(gender_preview)) # 1. Find directory for melanoma data - most relevant to red hair as both involve melanin pathways selected_dir = 'TCGA_Melanoma_(SKCM)' cohort_dir = os.path.join(tcga_root_dir, selected_dir) # 2. Get file paths for clinical and genetic data clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Record data availability is_gene_available = len(genetic_df.columns) > 0 is_trait_available = len(clinical_df.columns) > 0 validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Define candidate columns for age and gender candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Load clinical data from a previous step clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir) clinical_df = pd.read_table(clinical_file_path, index_col=0) # Preview age columns age_preview = {} for col in candidate_age_cols: age_preview[col] = clinical_df[col].head(5).tolist() print("Age columns preview:") print(age_preview) # Preview gender columns gender_preview = {} for col in candidate_gender_cols: gender_preview[col] = clinical_df[col].head(5).tolist() print("\nGender columns preview:") print(gender_preview) # Select appropriate demographic columns age_col = 'age_at_initial_pathologic_diagnosis' # This is more directly usable than days_to_birth gender_col = 'gender' # 1. Extract and standardize clinical features selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col) # 2. Normalize gene symbols in genetic data normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_genetic_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Check for bias in trait and demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate and save cohort info note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}" is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) print(f"Linked data saved to {out_data_file}") print("Shape of final linked data:", linked_data.shape) else: print("Dataset was found to be unusable and was not saved")