# Path Configuration from tools.preprocess import * # Processing context trait = "Aniridia" cohort = "GSE204791" # Input paths in_trait_dir = "../DATA/GEO/Aniridia" in_cohort_dir = "../DATA/GEO/Aniridia/GSE204791" # Output paths out_data_file = "./output/preprocess/1/Aniridia/GSE204791.csv" out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE204791.csv" out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE204791.csv" json_path = "./output/preprocess/1/Aniridia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # The series includes mRNA expression, so we consider it gene expression data. # 2. Variable Availability and Data Type Conversion # 2.1 Determine row indices for 'trait', 'age', 'gender' # Based on the sample characteristics dictionary: # - 0: ['age: 59', 'age: 28', ... ] # - 1: ['gender: F', 'gender: M'] # - 2: ['disease: KC', 'disease: healthy control'] # - 3: [ ... staging info ... ] # We are looking for "Aniridia" but our dictionary lists "KC" or "healthy control" for disease. # Hence, we do not have data for "Aniridia." So trait_row = None. trait_row = None # No data on "Aniridia" found age_row = 0 # Multiple ages are present gender_row = 1 # "F" and "M" are present # 2.2 Write conversion functions def convert_trait(val: str): """ Attempt to parse 'Aniridia' or 'control' from the string after the colon. Since 'Aniridia' is not actually in our sample data, return None. """ return None def convert_age(val: str): """ Parse the value after the colon and convert to float. Non-numeric or invalid data is converted to None. """ parts = val.split(':') if len(parts) < 2: return None raw_value = parts[1].strip() try: return float(raw_value) except ValueError: return None def convert_gender(val: str): """ Parse the value after the colon and convert: F -> 0 M -> 1 Otherwise -> None """ parts = val.split(':') if len(parts) < 2: return None raw_value = parts[1].strip().upper() if raw_value == 'F': return 0 elif raw_value == 'M': return 1 else: return None # 3. Save Metadata # Trait data availability is determined by whether trait_row is None. is_trait_available = (trait_row is not None) # Perform initial filtering (is_final=False). # This will record metadata if data fails initial filtering. is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, clinical data extraction is skipped. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers appear to be microarray probe IDs or custom probe identifiers rather than standard human gene symbols. # Therefore, they need to be mapped to gene symbols. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # Gene Identifier Mapping # 1. Identify which columns correspond to the expression data's probe ID and to the gene symbols. # From the annotation preview, "ID" appears to match the probe identifiers (e.g., "A_19_P..."), # and "GENE_SYMBOL" appears to be the gene symbol column. probe_id_col = "ID" gene_symbol_col = "GENE_SYMBOL" # 2. Extract the mapping information between probe IDs and gene symbols. gene_mapping_df = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col) # 3. Apply the mapping to convert probe-level data into gene-level data. gene_data = apply_gene_mapping(gene_data, gene_mapping_df) # STEP 7: Data Normalization and Linking import pandas as pd # Since in previous steps we determined trait_row = None (no available trait data), # we cannot link clinical data or perform trait-based filtering. Hence, we skip steps # that depend on clinical or trait information. # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. No trait data found; skip clinical linking, missing-value handling, and bias assessment. print("No trait data found. Skipping clinical linking, missing-value handling, and bias assessment.") # 3. Conduct final quality validation and save metadata. # Since there's no trait data, we must pass some dummy DataFrame and a boolean for is_biased # to avoid the ValueError in final mode. dummy_df = pd.DataFrame() is_biased_dummy = False # Arbitrary placeholder since we can't assess bias is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=is_biased_dummy, df=dummy_df, note="Trait data not found; dataset cannot be used for trait-based analysis." ) # 4. Because we don't have usable trait data, skip saving the linked data if is_usable: # This case should not occur since there's no trait data pass else: print("The dataset is not usable for trait-based association. Skipping final output.")