# Path Configuration from tools.preprocess import * # Processing context trait = "Asthma" cohort = "GSE123088" # Input paths in_trait_dir = "../DATA/GEO/Asthma" in_cohort_dir = "../DATA/GEO/Asthma/GSE123088" # Output paths out_data_file = "./output/preprocess/1/Asthma/GSE123088.csv" out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE123088.csv" out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE123088.csv" json_path = "./output/preprocess/1/Asthma/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1. Decide if gene expression data is available: is_gene_available = True # Based on the background info, we assume it's a gene expression dataset. # Step 2. Identify keys and define conversion functions. # 2.1 Find the rows that hold the trait (Asthma), age, and gender data. trait_row = 1 # multiple diagnoses found here, including 'ASTHMA' age_row = 3 # row with various ages gender_row = 2 # row containing both 'Sex: Male' and 'Sex: Female' # 2.2 Data type conversion functions def convert_trait(x: str): """ Convert trait to binary: 1 -> Asthma 0 -> Non-Asthma If cannot parse, return None. """ parts = x.split(":") if len(parts) < 2: return None value = parts[1].strip().lower() # If the word "asthma" appears, treat it as 1; otherwise 0. return 1 if "asthma" in value else 0 def convert_age(x: str): """ Convert age to a float (continuous). Unknown or unparsable -> None """ parts = x.split(":") if len(parts) < 2: return None value = parts[1].strip() try: return float(value) except: return None def convert_gender(x: str): """ Convert gender to binary: 0 -> Female 1 -> Male Unknown -> None """ parts = x.split(":") if len(parts) < 2: return None value = parts[1].strip().lower() if value == "male": return 1 elif value == "female": return 0 else: return None # Step 3. Save basic metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4. Clinical feature extraction (only if trait data is available). if trait_row is not None: df_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Observe the output preview_result = preview_df(df_clinical) print("Preview of extracted clinical features:\n", preview_result) # Save the clinical features df_clinical.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the numeric IDs observed (e.g., '1', '2', '3'), these are not standard human gene symbols. # They appear to be Entrez IDs or some other numeric identifiers. Therefore, gene mapping is required. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify which columns correspond to the gene expression IDs and the gene symbols: # From the preview, the "ID" column matches the numeric identifiers in the gene expression DataFrame, # and "ENTREZ_GENE_ID" represents the gene symbol (though it's also numeric, it's the only available gene label). mapping_df = get_gene_mapping( annotation=gene_annotation, prob_col="ID", # The probe/ID column that matches the expression data index gene_col="ENTREZ_GENE_ID" # The column we treat as the 'Gene' symbol ) # 2. Convert probe-level measurements to gene-level expression gene_data = apply_gene_mapping(gene_data, mapping_df) # gene_data now contains aggregated expression by gene. # STEP7 # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library. linked_data = geo_link_clinical_genetic_data(df_clinical, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and some demographic features are severely biased, and remove biased features. is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct quality check and save the cohort information, passing the final unbiased data. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=unbiased_linked_data ) # 6. If the linked data is usable, save it as a CSV file to 'out_data_file'. if is_usable: unbiased_linked_data.to_csv(out_data_file)