# Path Configuration from tools.preprocess import * # Processing context trait = "Asthma" cohort = "GSE182798" # Input paths in_trait_dir = "../DATA/GEO/Asthma" in_cohort_dir = "../DATA/GEO/Asthma/GSE182798" # Output paths out_data_file = "./output/preprocess/1/Asthma/GSE182798.csv" out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE182798.csv" out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE182798.csv" json_path = "./output/preprocess/1/Asthma/cohort_info.json" # STEP 1 # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) def convert_trait(x): if not isinstance(x, str): return None # Split only once, to ensure we keep the part after the colon. parts = x.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().lower() # Convert to a binary indicator: 1 if adult-onset asthma, else 0 # (other categories like IEI or healthy => 0) if 'adult-onset asthma' in val: return 1 else: return 0 def convert_age(x): if not isinstance(x, str): return None parts = x.split(':', 1) if len(parts) < 2: return None try: return float(parts[1].strip()) except ValueError: return None def convert_gender(x): if not isinstance(x, str): return None parts = x.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().lower() if val in ['female', 'f']: return 0 elif val in ['male', 'm']: return 1 return None # 1. Check gene expression data availability is_gene_available = True # Based on the transcriptomic profiling background # 2.1 Identify row indices for trait, age, and gender trait_row = 0 # "diagnosis: adult-onset asthma", etc. => available age_row = 2 # "age: 33.42", "age: 46.08", ... => available # Row 1 (gender) has only one unique value => treat it as not available gender_row = None # 3. Metadata: initial filtering # trait_row != None => trait is available is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. If trait is available, extract clinical features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, # None convert_gender=convert_gender ) preview_result = preview_df(selected_clinical_df) selected_clinical_df.to_csv(out_clinical_data_file, index=False) print(preview_result) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These IDs (e.g., 'A_19_P00315452') appear to be array probe identifiers rather than standard gene symbols. # Therefore, gene mapping is required. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1) Identify the appropriate columns in the gene annotation # - The probe ID column in the annotation that matches the expression data index is "ID" # - The gene symbol column is "GENE_SYMBOL" # 2) Get a dataframe mapping probe IDs to gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL") # 3) Convert probe-level expression data into gene-level expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Print the shape or a small preview of the resulting gene_data print("Gene-level expression data shape:", gene_data.shape) print("Gene-level expression data (head):") print(gene_data.head()) # STEP 7: Data Normalization and Linking # 1) Normalize gene symbols in the obtained gene expression data; # remove unrecognized symbols and average duplicates. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2) Read previously saved clinical data. Because we saved it in Step 2 with index=False and each row representing # a feature (trait or age), we need to transpose it so that the samples become rows and features become columns. clinical_df = pd.read_csv(out_clinical_data_file, header=0) clinical_df = clinical_df.T # Rename the columns so they match the variables we want clinical_df.columns = [trait, "Age"] # 3) Link clinical with genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) # 4) Handle missing values in the linked data: # remove samples with missing trait, remove genes with >20% missing, # remove samples with >5% missing genes, then impute for the rest. linked_data = handle_missing_values(linked_data, trait) # 5) Check for severe bias in the trait and remove biased demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6) Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Processed with trait and gene data successfully." ) # 7) If the dataset is usable, save the final linked data to CSV if is_usable: linked_data.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Data not usable. No final linked file was saved.")