# Path Configuration from tools.preprocess import * # Processing context trait = "Asthma" cohort = "GSE270312" # Input paths in_trait_dir = "../DATA/GEO/Asthma" in_cohort_dir = "../DATA/GEO/Asthma/GSE270312" # Output paths out_data_file = "./output/preprocess/1/Asthma/GSE270312.csv" out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE270312.csv" out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE270312.csv" json_path = "./output/preprocess/1/Asthma/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Gene Expression Data Availability # Based on the background stating "RNA transcriptome responses" were measured, we consider it gene expression data. is_gene_available = True # Step 2: Variable Availability and Conversion # 2.1 Identify rows for trait, age, and gender # From the sample characteristics dictionary, 'asthma status' = row 3, 'gender' = row 2. # No age information is provided. trait_row = 3 age_row = None gender_row = 2 # 2.2 Define data conversion functions def convert_trait(value: str): # Example: "asthma status: Yes" # Split by colon, then strip extra spaces parts = value.split(":") if len(parts) < 2: return None val = parts[1].strip().lower() if val == "yes": return 1 elif val == "no": return 0 return None def convert_age(value: str): # No age data available, so return None return None def convert_gender(value: str): # Example: "gender: Female" parts = value.split(":") if len(parts) < 2: return None val = parts[1].strip().lower() if val == "female": return 0 elif val == "male": return 1 return None # Step 3: Save Metadata (initial filtering) # Trait data is considered available if we have a valid row for it is_trait_available = (trait_row is not None) filter_pass = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the selected clinical features preview_clinical = preview_df(selected_clinical_df) # (You could print the preview or store it if needed; omitted here for brevity.) # Save the clinical data selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the observed gene identifiers such as ABCF1, ACE, ACKR2, etc., # these appear to be valid human gene symbols and do not require additional mapping. print("These genes are human gene symbols.") # Conclusion print("\nrequires_gene_mapping = False") # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait_col=trait) # 4. Determine whether the trait/demographic features are severely biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait) # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait data and gene data successfully linked." ) # 6. If the dataset is deemed usable, save the final linked data as a CSV file if is_usable: linked_data.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Dataset was not deemed usable; final linked data not saved.")