# Path Configuration from tools.preprocess import * # Processing context trait = "Cervical_Cancer" cohort = "GSE107754" # Input paths in_trait_dir = "../DATA/GEO/Cervical_Cancer" in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE107754" # Output paths out_data_file = "./output/preprocess/1/Cervical_Cancer/GSE107754.csv" out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/GSE107754.csv" out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/GSE107754.csv" json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Determine gene expression data availability is_gene_available = True # Based on the series summary, it uses whole human genome microarrays # 2) Determine availability and data type for trait, age, and gender # Map them to the appropriate row indices in the sample characteristics dictionary. trait_row = 2 # Row 2 contains "tissue: Cervix cancer" and "tissue: Cervical cancer" age_row = None # No explicit or inferred age data gender_row = 0 # Row 0 contains "gender: Male" and "gender: Female" # Define conversion functions for each variable def convert_trait(x: str): parts = x.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().lower() # Convert to binary: 1 if "cervix" or "cervical" is mentioned, else 0 if 'cervix' in val or 'cervical' in val: return 1 return 0 # Age is not available, so we won't use a real conversion function def convert_age(x: str): return None def convert_gender(x: str): parts = x.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().lower() # Convert to binary: female -> 0, male -> 1 if val == 'female': return 0 elif val == 'male': return 1 return None # 3) Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) filter_result = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) If trait data is available, proceed with clinical feature extraction if trait_row is not None: clinical_features_df = geo_select_clinical_features( clinical_data, trait, trait_row, convert_trait, age_row=age_row, convert_age=None, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical features preview = preview_df(clinical_features_df, n=5, max_items=200) print(preview) # Save the clinical features to a CSV file clinical_features_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the observed identifiers (e.g. A_23_P100001), they appear to be microarray probe IDs and not human gene symbols. # Therefore, they require mapping to gene symbols. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1) Inspecting the preview, the "ID" column in the annotation matches the probe identifiers # from our gene_data index, and "GENE_SYMBOL" will be used as the gene symbol. probe_col = "ID" symbol_col = "GENE_SYMBOL" # 2) Get the gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, probe_col, symbol_col) # 3) Apply the mapping to convert probe-level data to gene-level expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7 # Ensure "selected_clinical_df" is defined before use selected_clinical_df = clinical_features_df # 1. Normalize gene symbols in the gene_data, then save to CSV. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and demographic features are biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final validation and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait is available. Completed linking and QC steps." ) # 6. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file)