# Path Configuration from tools.preprocess import * # Processing context trait = "Cervical_Cancer" cohort = "GSE138079" # Input paths in_trait_dir = "../DATA/GEO/Cervical_Cancer" in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE138079" # Output paths out_data_file = "./output/preprocess/1/Cervical_Cancer/GSE138079.csv" out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/GSE138079.csv" out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/GSE138079.csv" json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) import pandas as pd from typing import Optional, Callable, Any, Dict # 1. Gene expression data availability is_gene_available = True # This dataset is labeled as mRNA expression data. # 2. Variable Availability and Data Type Conversion # After examining the sample characteristics, no rows match the human Cervical_Cancer trait, # and there is no age or gender info. Hence, all three rows are None. trait_row = None age_row = None gender_row = None # Define conversion functions. Even though data is unavailable, we still need these # as placeholders. A typical approach is to parse the string after “:” if present, # but we return None to indicate no valid data. def convert_trait(value: str) -> Optional[float]: return None def convert_age(value: str) -> Optional[float]: return None def convert_gender(value: str) -> Optional[int]: return None # 3. Save Metadata (Initial Filtering) # Trait is not available, so is_trait_available is False. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip clinical feature extraction. if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(selected_clinical_df) selected_clinical_df.to_csv(out_clinical_data_file) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the index values shown (e.g., '12', '13', '14'), these are not recognized human gene symbols. # They appear more like numeric or probe identifiers. Therefore, gene symbol mapping is needed. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6: Gene Identifier Mapping # 1. Decide which columns store the probe identifiers and the gene symbols. # From the annotation preview, "ID" appears to match the probe identifiers in gene_data, # and "GENE_SYMBOL" is likely the column for gene symbols. probe_col = "ID" gene_symbol_col = "GENE_SYMBOL" # 2. Get the gene mapping dataframe by extracting the relevant columns. mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col) # 3. Convert probe-level measurements to gene-level expression data. gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7 # Before proceeding, check if trait data is actually available from previous steps. # If not, we cannot link clinical and genetic data, so we skip those steps. # We will still normalize gene symbols, then record the dataset status appropriately. # 1. Normalize gene symbols in the gene_data, then save to CSV. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. If trait data is not available, perform initial (non-final) validation, then skip linking & QC steps. if not is_trait_available: is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=True, # We do have gene data is_trait_available=False, # No trait data was found note="No trait data; skipping linking and QC steps." ) # Since the dataset isn't usable without trait data, do not proceed further. else: # If trait data is available, proceed with linking and QC steps. linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) linked_data = handle_missing_values(linked_data, trait) trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 3. Final validation (since trait data is present). is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait is available. Completed linking and QC steps." ) # 4. If the dataset is usable, save the final linked data. if is_usable: linked_data.to_csv(out_data_file)