# Path Configuration from tools.preprocess import * # Processing context trait = "Rectal_Cancer" cohort = "GSE109057" # Input paths in_trait_dir = "../DATA/GEO/Rectal_Cancer" in_cohort_dir = "../DATA/GEO/Rectal_Cancer/GSE109057" # Output paths out_data_file = "./output/preprocess/1/Rectal_Cancer/GSE109057.csv" out_gene_data_file = "./output/preprocess/1/Rectal_Cancer/gene_data/GSE109057.csv" out_clinical_data_file = "./output/preprocess/1/Rectal_Cancer/clinical_data/GSE109057.csv" json_path = "./output/preprocess/1/Rectal_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Gene Expression Data Availability is_gene_available = True # The dataset states "expression microarray experiments for mRNA," so it's gene expression. # 2) Variable Availability and Data Type Conversion # Based on the sample characteristics dictionary: # (0) has a single unique value "rectal cancer" => constant feature => trait is not considered available. trait_row = None # constant => not useful age_row = 2 # multiple unique ranges => available gender_row = 1 # "Sex: M", "Sex: F" => available import re def convert_trait(x: str): # Not used because trait_row = None, but define it as requested. # Return None since trait is effectively unavailable. return None def convert_age(x: str): # Extract the substring after the colon, e.g. "35 <= age < 40" => parse numeric range => return midpoint. parts = x.split(':', 1) if len(parts) < 2: return None age_label = parts[1].strip() nums = re.findall(r'\d+', age_label) if len(nums) >= 2: low, high = float(nums[0]), float(nums[1]) return (low + high) / 2.0 elif len(nums) == 1: return float(nums[0]) return None def convert_gender(x: str): # Extract the substring after the colon, map "M" -> 1, "F" -> 0 parts = x.split(':', 1) if len(parts) < 2: return None gender_val = parts[1].strip().lower() if gender_val.startswith('m'): return 1 elif gender_val.startswith('f'): return 0 return None # 3) Save Metadata with initial filtering # Trait data is considered unavailable if trait_row is None. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Since trait_row is None, we skip clinical feature extraction for this dataset. # STEP3 import gzip import pandas as pd try: # 1. Attempt to extract gene expression data using the library function gene_data = get_genetic_data(matrix_file) except KeyError: # Fallback: the expected "ID_REF" column may be absent, so manually parse the file # and rename the first column to "ID". marker = "!series_matrix_table_begin" skip_rows = None # Determine how many rows to skip before the matrix data begins with gzip.open(matrix_file, 'rt') as f: for i, line in enumerate(f): if marker in line: skip_rows = i + 1 break else: raise ValueError(f"Marker '{marker}' not found in the file.") # Read the data from the determined position gene_data = pd.read_csv( matrix_file, compression='gzip', skiprows=skip_rows, comment='!', delimiter='\t', on_bad_lines='skip' ) # If a different column name is used instead of 'ID_REF', rename appropriately if 'ID_REF' in gene_data.columns: gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True) else: first_col = gene_data.columns[0] gene_data.rename(columns={first_col: 'ID'}, inplace=True) gene_data['ID'] = gene_data['ID'].astype(str) gene_data.set_index('ID', inplace=True) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers (e.g., "11715100_at") are Affymetrix probe IDs, not human gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # Gene Identifier Mapping # 1) Identify the columns in 'gene_annotation' that correspond to probe IDs and gene symbols. # From the preview, we see: # - probe identifier column is "ID" # - gene symbol column is "Gene Symbol" # 2) Create the gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, "ID", "Gene Symbol") # 3) Convert probe-level measurements in 'gene_data' to gene-level expression data gene_data = apply_gene_mapping(gene_data, mapping_df) import os import pandas as pd # STEP 7: Data Normalization and Linking # First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking. if not os.path.exists(out_clinical_data_file): # No trait data file => dataset is not usable for trait analysis df_null = pd.DataFrame() is_biased = True # Arbitrary boolean to satisfy function requirement validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=is_biased, df=df_null, note="No trait data file found; dataset not usable for trait analysis." ) else: # 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Load the previously extracted clinical CSV. selected_clinical_df = pd.read_csv(out_clinical_data_file) # If we had a single-row trait, rename row 0 to the trait name (example usage). selected_clinical_df = selected_clinical_df.rename(index={0: trait}) # Combine these as our final clinical data; in this dataset, we only have trait info (if any). combined_clinical_df = selected_clinical_df # Link the clinical and genetic data by matching sample IDs in columns. linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute). processed_data = handle_missing_values(linked_data, trait) # 4. Check trait bias and remove any biased demographic features (if any). trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait) # 5. Final validation and metadata saving. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=processed_data, note="Completed trait-based preprocessing." ) # 6. If final dataset is usable, save. Otherwise, skip. if is_usable: processed_data.to_csv(out_data_file)