# Path Configuration from tools.preprocess import * # Processing context trait = "Rectal_Cancer" cohort = "GSE170999" # Input paths in_trait_dir = "../DATA/GEO/Rectal_Cancer" in_cohort_dir = "../DATA/GEO/Rectal_Cancer/GSE170999" # Output paths out_data_file = "./output/preprocess/1/Rectal_Cancer/GSE170999.csv" out_gene_data_file = "./output/preprocess/1/Rectal_Cancer/gene_data/GSE170999.csv" out_clinical_data_file = "./output/preprocess/1/Rectal_Cancer/clinical_data/GSE170999.csv" json_path = "./output/preprocess/1/Rectal_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine gene expression data availability # Based on the background info, it's an Affymetrix U133 platform gene expression study, # so we set is_gene_available = True. is_gene_available = True # 2. Identify availability of trait, age, and gender data: # From the sample characteristics dictionary, we only see KRAS mutation status entries. # There's no direct or variable trait data about Rectal_Cancer (all samples are rectal cancer patients), # so it's effectively constant and not useful for association analysis. # Similarly, there's no age or gender data. trait_row = None age_row = None gender_row = None # 2.2 Define data type conversion functions. # Even though data rows are not available, we still define them as placeholders. def convert_trait(value: str): # No actual data is present. Return None for demonstration. return None def convert_age(value: str): # No age data provided. Return None. return None def convert_gender(value: str): # No gender data provided. Return None. return None # 3. Save metadata with initial filtering (is_final=False). # Trait data is not available because trait_row is None, hence is_trait_available=False. is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Since trait_row is None, we do NOT extract or save clinical features. # (Skipping geo_select_clinical_features step as per instructions.) # STEP3 import gzip import pandas as pd try: # 1. Attempt to extract gene expression data using the library function gene_data = get_genetic_data(matrix_file) except KeyError: # Fallback: the expected "ID_REF" column may be absent, so manually parse the file # and rename the first column to "ID". marker = "!series_matrix_table_begin" skip_rows = None # Determine how many rows to skip before the matrix data begins with gzip.open(matrix_file, 'rt') as f: for i, line in enumerate(f): if marker in line: skip_rows = i + 1 break else: raise ValueError(f"Marker '{marker}' not found in the file.") # Read the data from the determined position gene_data = pd.read_csv( matrix_file, compression='gzip', skiprows=skip_rows, comment='!', delimiter='\t', on_bad_lines='skip' ) # If a different column name is used instead of 'ID_REF', rename appropriately if 'ID_REF' in gene_data.columns: gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True) else: first_col = gene_data.columns[0] gene_data.rename(columns={first_col: 'ID'}, inplace=True) gene_data['ID'] = gene_data['ID'].astype(str) gene_data.set_index('ID', inplace=True) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The identifiers resemble Affymetrix probe set IDs and are not human gene symbols. # Therefore, gene symbol mapping is required. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Determine which columns in the gene_annotation DataFrame correspond to # the probe identifiers (matching those in gene_data.index) and to the gene symbols. id_col = "ID" symbol_col = "Gene Symbol" # 2. Extract the gene mapping DataFrame with two columns: the probe ID and the gene symbol. mapping_df = get_gene_mapping(gene_annotation, prob_col=id_col, gene_col=symbol_col) # 3. Convert probe-level measurements to gene-level expression data by applying # the mapping rules (splitting probe expression among multiple genes, etc.). gene_data = apply_gene_mapping(gene_data, mapping_df) import os import pandas as pd # STEP 7: Data Normalization and Linking # First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking. if not os.path.exists(out_clinical_data_file): # No trait data file => dataset is not usable for trait analysis df_null = pd.DataFrame() is_biased = True # Arbitrary boolean to satisfy function requirement validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=is_biased, df=df_null, note="No trait data file found; dataset not usable for trait analysis." ) else: # 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Load the previously extracted clinical CSV. selected_clinical_df = pd.read_csv(out_clinical_data_file) # If we had a single-row trait, rename row 0 to the trait name (example usage). selected_clinical_df = selected_clinical_df.rename(index={0: trait}) # Combine these as our final clinical data; in this dataset, we only have trait info (if any). combined_clinical_df = selected_clinical_df # Link the clinical and genetic data by matching sample IDs in columns. linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute). processed_data = handle_missing_values(linked_data, trait) # 4. Check trait bias and remove any biased demographic features (if any). trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait) # 5. Final validation and metadata saving. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=processed_data, note="Completed trait-based preprocessing." ) # 6. If final dataset is usable, save. Otherwise, skip. if is_usable: processed_data.to_csv(out_data_file)