# Path Configuration from tools.preprocess import * # Processing context trait = "Cervical_Cancer" cohort = "GSE138080" # Input paths in_trait_dir = "../DATA/GEO/Cervical_Cancer" in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE138080" # Output paths out_data_file = "./output/preprocess/1/Cervical_Cancer/GSE138080.csv" out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/GSE138080.csv" out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/GSE138080.csv" json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # Step: Dataset Analysis and Clinical Feature Extraction # 1. Determine if the dataset likely contains gene expression data is_gene_available = True # Based on the "mRNA tissues-Agilent" description # 2. Determine availability of variables and write conversion functions # From the sample characteristics: # {0: ['cell type: normal cervical squamous epithelium', # 'cell type: cervical intraepithelial neoplasia, grade 2-3', # 'cell type: cervical squamous cell carcinoma'], # 1: ['hpv: high-risk HPV-positive', # 'hpv: HPV-negative']} # Observing these, row 0 contains different states of cervical tissue, # which we interpret as relevant to the trait "Cervical_Cancer." # Hence we set: trait_row = 0 # There is no row indicating age, so: age_row = None # There is no row indicating gender, so: gender_row = None # Data Type Conversion Functions def convert_trait(value: str): # Extract the text after the colon if present parts = value.split(':', 1) val = parts[1].strip().lower() if len(parts) == 2 else value.strip().lower() # Convert to binary (0 = normal, 1 = pre-cancer or cancer) if "normal" in val: return 0 elif "intraepithelial" in val or "carcinoma" in val: return 1 return None def convert_age(value: str): # Not used since age is unavailable return None def convert_gender(value: str): # Not used since gender is unavailable return None # 3. Perform initial filtering and save metadata # Trait data is available if trait_row is not None is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical feature extraction if trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview dataframe preview = preview_df(selected_clinical_df, n=5, max_items=200) print("Preview of selected clinical features:", preview) # Save the clinical data selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("These numeric entries appear to be probe IDs or some numeric references, not standard human gene symbols.\nrequires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Determine which columns in gene_annotation match the probe IDs in gene_data and which store gene symbols. # From the preview, "ID" matches the probe IDs, and "GENE_SYMBOL" corresponds to gene symbols. # 2. Create a mapping dataframe from the gene_annotation by extracting the probe ID column and gene symbol column. mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL") # 3. Convert the probe-level data to gene-level data using the mapping, distributing expression among genes if a probe # maps to multiple genes, and summing across probes for the same gene. gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Print a brief check of the new gene_data print("Gene data shape after mapping:", gene_data.shape) print("First 20 genes after mapping:", gene_data.index[:20]) # STEP 7 # 1. Normalize gene symbols in the gene_data, then save to CSV. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and demographic features are biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final validation and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait is available. Completed linking and QC steps." ) # 6. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file)