# Path Configuration from tools.preprocess import * # Processing context trait = "Sarcoma" cohort = "GSE233860" # Input paths in_trait_dir = "../DATA/GEO/Sarcoma" in_cohort_dir = "../DATA/GEO/Sarcoma/GSE233860" # Output paths out_data_file = "./output/preprocess/1/Sarcoma/GSE233860.csv" out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE233860.csv" out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE233860.csv" json_path = "./output/preprocess/1/Sarcoma/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Given the background information mentions gene expression quantification of 770 genes # 2. Variable Availability # The sample characteristics dictionary only has one key (0) with values: ["outcome: SD", "outcome: PD", "outcome: PR"]. # None of these correspond to the trait (Sarcoma), age, or gender. Therefore: trait_row = None age_row = None gender_row = None # 2.2 Data Type Conversion def convert_trait(value: str): # Example parsing: split on ':' and use the second part if available parts = value.split(':', 1) if len(parts) < 2: return None raw_val = parts[1].strip().lower() # This dataset doesn't actually provide trait info, so we return None return None def convert_age(value: str): # Example parsing: split on ':' and convert to float if possible parts = value.split(':', 1) if len(parts) < 2: return None raw_val = parts[1].strip() try: return float(raw_val) except ValueError: return None def convert_gender(value: str): # Example parsing: split on ':' and map female -> 0, male -> 1 parts = value.split(':', 1) if len(parts) < 2: return None raw_val = parts[1].strip().lower() if 'male' in raw_val: return 1 elif 'female' in raw_val: return 0 else: return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) print("Initial usability check:", is_usable) # 4. Clinical Feature Extraction # This step is skipped because trait_row is None (trait data not available).