# Path Configuration from tools.preprocess import * # Processing context trait = "Schizophrenia" cohort = "GSE120340" # Input paths in_trait_dir = "../DATA/GEO/Schizophrenia" in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE120340" # Output paths out_data_file = "./output/preprocess/1/Schizophrenia/GSE120340.csv" out_gene_data_file = "./output/preprocess/1/Schizophrenia/gene_data/GSE120340.csv" out_clinical_data_file = "./output/preprocess/1/Schizophrenia/clinical_data/GSE120340.csv" json_path = "./output/preprocess/1/Schizophrenia/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Affymetrix whole-genome expression microarray indicates gene expression data # 2.1 Variable Availability trait_row = 0 # Row with multiple disease states, including SCZ age_row = None # No age data in the dictionary gender_row = None # No gender data in the dictionary # 2.2 Data Type Conversion def convert_trait(value: str): parts = value.split(':', 1) if len(parts) == 2: v = parts[1].strip().lower() # Mark SCZ as 1, others as 0 return 1 if v == 'scz' else 0 return None def convert_age(value: str): # No age data is available return None def convert_gender(value: str): # No gender data is available return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait data is available) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Observe output print(preview_df(selected_clinical_df)) # Save extracted clinical features selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the observed identifiers (e.g., 10002_at), these are Affymetrix probe set IDs, not standard human gene symbols. # Therefore, a mapping step to human gene symbols is needed. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns in gene_annotation that match the probe IDs and the gene symbols. # From the preview, "ID" matches the probe ID used in gene_data, and "Description" appears # to contain the gene's name/symbol information (albeit in a descriptive form). mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Description') # 2. Convert probe-level measurements to gene-level measurements by applying the mapping. gene_data = apply_gene_mapping(gene_data, mapping_df) # For confirmation, let's see the shape of the resulting gene_data print("Mapped gene_data shape:", gene_data.shape) # STEP7 # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library. # Fixing the variable name from 'selected_clinical_data' to 'selected_clinical_df' linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and some demographic features are severely biased, and remove biased features. is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct quality check and save the cohort information. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data ) # 6. If the linked data is usable, save it as a CSV file to 'out_data_file'. if is_usable: unbiased_linked_data.to_csv(out_data_file)