{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "704f0c67", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Essential_Thrombocythemia\"\n", "cohort = \"GSE159514\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Essential_Thrombocythemia\"\n", "in_cohort_dir = \"../../input/GEO/Essential_Thrombocythemia/GSE159514\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Essential_Thrombocythemia/GSE159514.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Essential_Thrombocythemia/gene_data/GSE159514.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Essential_Thrombocythemia/clinical_data/GSE159514.csv\"\n", "json_path = \"../../output/preprocess/Essential_Thrombocythemia/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "342bd257", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "0b6ddcfa", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "7a466ed0", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "eeccfaa8", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os\n", "import json\n", "from typing import Optional, Callable, Dict, Any\n", "\n", "# 1. Gene Expression Data Availability\n", "# Based on background information, this dataset contains gene expression profiling data from microarray\n", "is_gene_available = True\n", "\n", "# 2.1 Data Availability\n", "# For trait: The trait is available from the 'disease' field (row 0)\n", "trait_row = 0\n", "\n", "# For age and gender: Not available in the sample characteristics dictionary\n", "age_row = None\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion Functions\n", "def convert_trait(value: str) -> int:\n", " \"\"\"Convert trait value to binary (0 for control, 1 for case)\"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract value after colon if applicable\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Based on the context, this is a study on myelofibrosis\n", " # Essential Thrombocythemia (ET) specifically relates to PET (Post-ET myelofibrosis)\n", " if 'PET' in value: # Post-ET myelofibrosis is related to Essential Thrombocythemia\n", " return 1\n", " else:\n", " return 0 # Other conditions (PPV, Overt-PMF, Pre-PMF) are not Essential Thrombocythemia\n", "\n", "def convert_age(value: str) -> Optional[float]:\n", " \"\"\"Convert age value to continuous number\"\"\"\n", " # Not available in this dataset\n", " return None\n", "\n", "def convert_gender(value: str) -> Optional[int]:\n", " \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n", " # Not available in this dataset\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine trait data availability\n", "is_trait_available = trait_row is not None\n", "\n", "# Conduct initial filtering on usability\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Create a proper DataFrame from the sample characteristics dictionary\n", " # The dictionary has two columns (0 and 1) which need to be converted to a DataFrame with proper shape\n", " \n", " # First, create a dictionary where keys are column names and values are column data\n", " sample_chars = {\n", " 0: ['disease: PPV', 'disease: Overt-PMF', 'disease: PET', 'disease: Pre-PMF'],\n", " 1: ['driver mutation: JAK2V617F', 'driver mutation: CALR Type 1', \n", " 'driver mutation: MPL', 'driver mutation: TN', \n", " 'driver mutation: CALR Type 2', 'driver mutation: CALR', \n", " 'driver mutation: JAK2 ex12']\n", " }\n", " \n", " # For the geo_select_clinical_features function, we need a DataFrame where each row is a feature\n", " # and each column is a sample. For this simple example, reshape it appropriately\n", " clinical_data = pd.DataFrame()\n", " for i, values in sample_chars.items():\n", " # Add each feature as a row\n", " row_df = pd.DataFrame([values])\n", " clinical_data = pd.concat([clinical_data, row_df], ignore_index=True)\n", " \n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical data\n", " print(\"Preview of selected clinical data:\")\n", " preview = preview_df(selected_clinical_df)\n", " print(preview)\n", " \n", " # Create directory if it doesn't exist\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " \n", " # Save clinical data as CSV\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "1dc156dd", "metadata": {}, "source": [ "### Step 3: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "8b2b9e18", "metadata": {}, "outputs": [], "source": [ "import os\n", "import json\n", "import pandas as pd\n", "from typing import Callable, Optional, Dict, Any\n", "\n", "# Check for required data files\n", "clinical_data_path = os.path.join(in_cohort_dir, \"sample_characteristics.csv\")\n", "if os.path.exists(clinical_data_path):\n", " clinical_data = pd.read_csv(clinical_data_path)\n", " print(f\"Clinical data loaded with shape {clinical_data.shape}\")\n", "else:\n", " print(f\"Clinical data file not found at {clinical_data_path}\")\n", " clinical_data = pd.DataFrame()\n", "\n", "metadata_path = os.path.join(in_cohort_dir, \"metadata.txt\")\n", "if os.path.exists(metadata_path):\n", " with open(metadata_path, 'r') as f:\n", " metadata = f.read()\n", " print(f\"Metadata file loaded ({len(metadata)} characters)\")\n", "else:\n", " metadata = \"\"\n", " print(f\"Metadata file not found at {metadata_path}\")\n", "\n", "# Check for gene expression data\n", "matrix_path = os.path.join(in_cohort_dir, \"matrix.csv\")\n", "is_gene_available = os.path.exists(matrix_path)\n", "if is_gene_available:\n", " print(f\"Gene expression matrix file found at {matrix_path}\")\n", "else:\n", " print(\"Gene expression matrix file not found, setting is_gene_available to False\")\n", "\n", "# Since we don't have clinical data, we can't identify trait, age, and gender rows\n", "# Set all to None to indicate data is not available\n", "trait_row = None\n", "age_row = None\n", "gender_row = None\n", "\n", "# Define conversion functions for completeness, but they won't be used since data is not available\n", "def convert_trait(value):\n", " \"\"\"Convert trait value to binary (0 for control, 1 for Essential Thrombocythemia)\"\"\"\n", " if pd.isna(value):\n", " return None\n", " value = str(value).lower()\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " if any(term in value.lower() for term in ['et', 'essential thrombocythemia', 'thrombocythaemia']):\n", " return 1\n", " elif any(term in value.lower() for term in ['control', 'healthy', 'normal']):\n", " return 0\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age value to continuous numeric format\"\"\"\n", " if pd.isna(value):\n", " return None\n", " value = str(value)\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " import re\n", " age_match = re.search(r'(\\d+)', value)\n", " if age_match:\n", " return float(age_match.group(1))\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n", " if pd.isna(value):\n", " return None\n", " value = str(value).lower()\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " if any(term in value for term in ['female', 'f', 'woman']):\n", " return 0\n", " elif any(term in value for term in ['male', 'm', 'man']):\n", " return 1\n", " return None\n", "\n", "# Check if trait data is available\n", "is_trait_available = trait_row is not None\n", "print(f\"Trait data available: {is_trait_available}\")\n", "\n", "# Save metadata using the library function\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "print(f\"Cohort metadata saved to {json_path}\")\n", "print(f\"Dataset analysis complete. Gene data available: {is_gene_available}, Trait data available: {is_trait_available}\")\n", "\n", "# We skip clinical feature extraction since trait_row is None (data not available)\n", "if trait_row is not None:\n", " # Use geo_select_clinical_features function to extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the data\n", " preview = preview_df(selected_clinical_df)\n", " print(\"Preview of selected clinical data:\")\n", " print(preview)\n", " \n", " # Save clinical data to CSV\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=True)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "else:\n", " print(\"Skipping clinical feature extraction as trait data is not available\")\n" ] }, { "cell_type": "markdown", "id": "3ef04f37", "metadata": {}, "source": [ "### Step 4: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "d38310a4", "metadata": {}, "outputs": [], "source": [ "# 1. First get the file paths again to access the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n", "print(\"First 20 gene/probe identifiers:\")\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "d04329b7", "metadata": {}, "source": [ "### Step 5: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "364cb8ce", "metadata": {}, "outputs": [], "source": [ "# Looking at the gene identifiers, I can see they follow the format like \"11715100_at\", \"11715101_s_at\", etc.\n", "# These are not human gene symbols but appear to be Affymetrix probe IDs\n", "# They will require mapping to human gene symbols for meaningful biological interpretation\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "25410565", "metadata": {}, "source": [ "### Step 6: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "bc744654", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "d2adb263", "metadata": {}, "source": [ "### Step 7: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "ce58e838", "metadata": {}, "outputs": [], "source": [ "# 1. Identify the relevant columns for mapping\n", "probe_id_column = 'ID'\n", "gene_symbol_column = 'Gene Symbol'\n", "\n", "# 2. Get a gene mapping dataframe by extracting the relevant columns\n", "mapping_df = get_gene_mapping(gene_annotation, probe_id_column, gene_symbol_column)\n", "print(f\"Created mapping between {probe_id_column} and {gene_symbol_column}\")\n", "print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n", "print(\"First 5 rows of mapping dataframe:\")\n", "print(mapping_df.head())\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene expression\n", "gene_data = apply_gene_mapping(gene_data, mapping_df)\n", "print(f\"Mapped gene expression data shape: {gene_data.shape}\")\n", "print(\"First 10 genes in mapped expression data:\")\n", "print(gene_data.index[:10])\n", "\n", "# 4. Normalize gene symbols (if needed)\n", "gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Normalized gene expression data shape: {gene_data.shape}\")\n", "print(\"First 10 genes after normalization:\")\n", "print(gene_data.index[:10])\n", "\n", "# 5. Save the processed gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "152d4d15", "metadata": {}, "source": [ "### Step 8: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "6bd69386", "metadata": {}, "outputs": [], "source": [ "# 1. Re-acquire gene data as it seems to be missing in this context\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# Extract gene annotation and mapping again\n", "gene_annotation = get_gene_annotation(soft_file)\n", "mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')\n", "gene_data = apply_gene_mapping(gene_data, mapping_df)\n", "\n", "# 1. Normalize gene symbols in the gene expression data\n", "print(\"Normalizing gene symbols...\")\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", "\n", "# Save the normalized gene data to a CSV file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# Define trait availability based on previous analysis steps\n", "trait_row = None # From previous steps we determined trait data wasn't properly available\n", "is_gene_available = True\n", "is_trait_available = False\n", "\n", "# 2. Check if trait data is available before attempting to link\n", "if trait_row is not None:\n", " print(\"Loading the original clinical data...\")\n", " background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n", "\n", " print(\"Extracting clinical features...\")\n", " # Define conversion functions\n", " def convert_trait(value):\n", " if isinstance(value, str) and ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " return 1 if 'PET' in str(value) else 0\n", " \n", " def convert_age(value):\n", " return None\n", " \n", " def convert_gender(value):\n", " return None\n", " \n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", "\n", " print(\"Clinical data preview:\")\n", " print(preview_df(selected_clinical_df))\n", "\n", " # Save the clinical data to a CSV file\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", " # Link clinical and genetic data using the normalized gene data\n", " print(\"Linking clinical and genetic data...\")\n", " linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n", " print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", " # 3. Handle missing values in the linked data\n", " print(\"Handling missing values...\")\n", " linked_data = handle_missing_values(linked_data, trait)\n", " print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n", "\n", " # 4. Check if trait is biased\n", " print(\"Checking for bias in trait distribution...\")\n", " is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "else:\n", " print(\"Trait data is not available, skipping clinical data extraction and linking.\")\n", " # Set variables for final validation\n", " is_biased = None # Cannot determine bias without trait data\n", " linked_data = pd.DataFrame() # Empty dataframe for validation\n", "\n", "# 5. Final validation\n", "note = \"Dataset contains gene expression data from patients with myelofibrosis, but Essential Thrombocythemia specific annotations are not available in proper format.\"\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=note\n", ")\n", "\n", "print(f\"Dataset usability: {is_usable}\")\n", "\n", "# 6. Save linked data if usable\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Dataset is not usable for trait-gene association studies due to lack of proper trait annotations.\")\n" ] }, { "cell_type": "markdown", "id": "25ba5ab2", "metadata": {}, "source": [ "### Step 9: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "853fbe3b", "metadata": {}, "outputs": [], "source": [ "# 1. Reload gene data and perform gene mapping since it's not available in this context\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "gene_data = get_genetic_data(matrix_file)\n", "gene_annotation = get_gene_annotation(soft_file)\n", "mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')\n", "gene_data = apply_gene_mapping(gene_data, mapping_df)\n", "\n", "# Normalize gene symbols in the gene expression data\n", "print(\"Normalizing gene symbols...\")\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", "\n", "# Save the normalized gene data to a CSV file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# Define the trait availability based on previous steps\n", "is_trait_available = trait_row is not None\n", "is_gene_available = True # We have gene data\n", "\n", "# Skip clinical data extraction and linking since trait data is unavailable\n", "print(\"Trait data is not available, skipping clinical data extraction and linking.\")\n", "linked_data = pd.DataFrame() # Empty dataframe since we can't link\n", "is_biased = False # Cannot determine bias for non-existent trait data\n", "\n", "# Final validation\n", "note = \"Dataset contains gene expression data from myelofibrosis patients, but Essential Thrombocythemia specific annotations are not properly available for trait-gene association studies.\"\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=note\n", ")\n", "\n", "print(f\"Dataset usability: {is_usable}\")\n", "\n", "# Save linked data if usable (will not execute since is_usable will be False)\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Dataset is not usable for trait-gene association studies due to lack of proper trait annotations.\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }