{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "e600623e", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Adrenocortical_Cancer\"\n", "cohort = \"GSE68950\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Adrenocortical_Cancer\"\n", "in_cohort_dir = \"../../input/GEO/Adrenocortical_Cancer/GSE68950\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Adrenocortical_Cancer/GSE68950.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Adrenocortical_Cancer/gene_data/GSE68950.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Adrenocortical_Cancer/clinical_data/GSE68950.csv\"\n", "json_path = \"../../output/preprocess/Adrenocortical_Cancer/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "f24deabf", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "07caa148", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "2a866c39", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "9e1ad2cb", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "14268501", "metadata": {}, "source": [ "### Step 3: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "9558f493", "metadata": {}, "outputs": [], "source": [ "```python\n", "import pandas as pd\n", "import os\n", "import json\n", "import numpy as np\n", "from typing import Optional, Callable, Dict, Any\n", "\n", "# Load the clinical data from the raw data file\n", "try:\n", " # Try loading from the matrix file directly instead of pkl\n", " matrix_file = os.path.join(in_cohort_dir, \"matrix.csv\")\n", " if os.path.exists(matrix_file):\n", " clinical_data = pd.read_csv(matrix_file, index_col=0)\n", " print(f\"Matrix file loaded successfully from {matrix_file}\")\n", " else:\n", " # Try to find any available data files\n", " data_files = [f for f in os.listdir(in_cohort_dir) if f.endswith(('.txt', '.csv'))]\n", " if data_files:\n", " matrix_file = os.path.join(in_cohort_dir, data_files[0])\n", " clinical_data = pd.read_csv(matrix_file, sep='\\t' if matrix_file.endswith('.txt') else ',', index_col=0)\n", " print(f\"Data file loaded successfully from {matrix_file}\")\n", " else:\n", " raise FileNotFoundError(f\"No data files found in {in_cohort_dir}\")\n", " \n", " # Extract and examine sample characteristics\n", " if '!Sample_characteristics_ch1' in clinical_data.index:\n", " # Characteristics are in the rows\n", " sample_chars = clinical_data.loc[['!Sample_characteristics_ch1']]\n", " \n", " # Transpose if needed to have samples as rows and characteristics as columns\n", " if len(sample_chars.columns) > len(sample_chars.index):\n", " # Already in the right format\n", " characteristics_df = sample_chars\n", " else:\n", " characteristics_df = sample_chars.T\n", " \n", " print(\"Sample characteristics found in the index\")\n", " elif '!Sample_characteristics_ch1' in clinical_data.columns:\n", " # Characteristics are in the columns\n", " characteristics_df = clinical_data[['!Sample_characteristics_ch1']]\n", " print(\"Sample characteristics found in the columns\")\n", " else:\n", " # Look for other potential characteristic headers\n", " potential_headers = [col for col in clinical_data.columns if 'characteristics' in col.lower()]\n", " if potential_headers:\n", " characteristics_df = clinical_data[potential_headers]\n", " print(f\"Using alternative characteristic headers: {potential_headers}\")\n", " else:\n", " # Check if this is a standard GEO format with characteristics in multiple rows\n", " char_rows = [i for i, idx in enumerate(clinical_data.index) if 'characteristics' in str(idx).lower()]\n", " if char_rows:\n", " characteristics_df = clinical_data.iloc[char_rows]\n", " print(f\"Found characteristics in rows: {char_rows}\")\n", " else:\n", " raise ValueError(\"Sample characteristics not found in the data\")\n", " \n", " print(\"\\nData structure:\")\n", " print(f\"Shape: {clinical_data.shape}\")\n", " print(f\"Index: {list(clinical_data.index)[:5]}...\")\n", " print(f\"Columns: {list(clinical_data.columns)[:5]}...\")\n", " \n", " # Print a sample of the characteristics\n", " print(\"\\nSample characteristics preview:\")\n", " print(characteristics_df.head())\n", " \n", " # Identify trait, age, and gender information from the characteristics\n", " trait_row = None\n", " age_row = None\n", " gender_row = None\n", " \n", " # Collect unique values for each row to analyze content\n", " unique_values = {}\n", " \n", " # Depending on the structure, extract sample characteristics\n", " if isinstance(characteristics_df, pd.DataFrame):\n", " # If we have multiple characteristic rows/cols\n", " for i, row in enumerate(characteristics_df.index):\n", " if isinstance(characteristics_df, pd.DataFrame) and len(characteristics_df.columns) > 0:\n", " values = []\n", " for col in characteristics_df.columns:\n", " val = characteristics_df.loc[row, col]\n", " if pd.notna(val):\n", " values.append(str(val))\n", " if values:\n", " unique_values[i] = \"; \".join(set(values))\n", " \n", " # If no values were extracted using the method above, try an alternative approach\n", " if not unique_values:\n", " # Try to extract directly from the matrix file\n", " for i in range(min(20, len(clinical_data))): # Check first 20 rows for characteristics\n", " if i < len(clinical_data.index):\n", " row_name = clinical_data.index[i]\n", " if isinstance(row_name, str) and \"characteristics\" in row_name.lower():\n", " values = clinical_data.iloc[i].astype(str).tolist()\n", " unique_values[i] = \"; \".join(set(values))\n", " \n", " print(\"\\nUnique values for potential characteristic rows:\")\n", " for key, value in unique_values.items():\n", " print(f\"Row {key}: {value}\")\n", " \n", " # Analyze the unique values to identify trait, age, and gender\n", " for row_idx, values in unique_values.items():\n", " values_lower = values.lower()\n", " \n", " # Identify trait information\n", " if any(term in values_lower for term in [\"diagnosis\", \"tissue\", \"tumor\", \"carcinoma\", \"status\", \"histology\", \"sample type\", \"sample_type\", \"disease\"]):\n", " trait_row = row_idx\n", " print(f\"Found trait row: {row_idx} - {values}\")\n", " \n", " # Identify age information\n", " if \"age\" in values_lower:\n", " age_row = row_idx\n", " print(f\"Found age row: {row_idx} - {values}\")\n", " \n", " # Identify gender/sex information\n", " if any(term in values_lower for term in [\"gender\", \"sex\"]):\n", " gender_row = row_idx\n", " print(f\"Found gender row: {row_idx} - {values}\")\n", " \n", "except Exception as e:\n", " print(f\"Error processing data: {e}\")\n", " # Set default values as we couldn't analyze the data\n", " unique_values = {}\n", " trait_row = None\n", " age_row = None\n", " gender_row = None\n", "\n", "# 1. Gene Expression Data Availability\n", "# For GEO datasets with GSE prefix, we generally assume they contain gene expression data\n", "# unless we see evidence otherwise\n", "is_gene_available = True\n", "\n", "# 2. Define conversion functions for each variable\n", "def convert_trait(value):\n", " \"\"\"Convert trait value to binary (0 for normal/control, 1 for cancer/case)\"\"\"\n", " if value is None or pd.isna(value):\n", " return None\n", " \n", " # Extract the value after the colon if present\n", " if isinstance(value, str) and \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " value_lower = str(value).lower()\n", " \n", " # Map to binary values for Adrenocortical Cancer\n", " if any(term in value_lower for term in [\"normal\", \"control\", \"healthy\", \"non-tumor\", \"non tumor\", \"adjacent\", \"non-neoplastic\"]):\n", " return 0\n", " elif any(term in value_lower for term in [\"tumor\", \"cancer\", \"carcinoma\", \"adrenocortical\", \"adenoma\", \"adc\", \"acc\", \"malignant\"]):\n", " return 1\n", " else:\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age value to continuous numeric value\"\"\"\n", " if value is None or pd.isna(value):\n", " return None\n", " \n", " # Extract the value after the colon if present\n", " if isinstance(value, str) and \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Try to extract numeric age\n", " import re\n", " age_match = re.search(r'(\\d+)', str(value))\n", " if age_match:\n", " return float(age_match.group(1))\n", " else:\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n", " if value is None or pd.isna(value):\n", " return None\n", " \n", " # Extract the value after the colon if present\n", " if isinstance(value, str) and \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " value_lower = str(value).lower()\n", " \n", " # Map to binary values\n", " if any(\n" ] }, { "cell_type": "markdown", "id": "a58a1e49", "metadata": {}, "source": [ "### Step 4: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "71b941dd", "metadata": {}, "outputs": [], "source": [ "# Check the raw clinical data\n", "import os\n", "import json\n", "import pandas as pd\n", "from typing import Optional, Callable, Dict, Any\n", "\n", "# Let's first check what data we have\n", "# Since we need to analyze the clinical_data, let's check if it exists\n", "if 'clinical_data' in globals():\n", " print(\"clinical_data exists. Examining its structure...\")\n", " print(f\"Shape: {clinical_data.shape}\")\n", " print(f\"First few rows:\\n{clinical_data.head()}\")\n", " \n", " # Look at unique values in sample characteristics to identify relevant rows\n", " print(\"\\nUnique values in sample characteristics:\")\n", " for i in range(clinical_data.shape[0]):\n", " print(f\"Row {i}: {set(clinical_data.iloc[i, :])}\")\n", "else:\n", " print(\"clinical_data variable is not available. We need to load the data first.\")\n", " # You might need to load the data here, but since this is a continuation, \n", " # we'll assume the data has been loaded in a previous step.\n", "\n", "# Let's first check if this is a gene expression dataset\n", "is_gene_available = True # Based on the assumption this is gene expression data\n", " # Without detailed data, we're making a best judgment\n", "\n", "# Define functions to convert trait, age, and gender data\n", "def convert_trait(value):\n", " if pd.isna(value) or value is None:\n", " return None\n", " \n", " # Extract the value after colon if present\n", " if isinstance(value, str) and ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Convert to binary based on common descriptions\n", " if value.lower() in ['normal', 'healthy', 'control', 'non-cancer', 'non cancer']:\n", " return 0\n", " elif value.lower() in ['cancer', 'tumor', 'adrenocortical cancer', 'acc', 'adrenocortical carcinoma']:\n", " return 1\n", " else:\n", " return None\n", "\n", "def convert_age(value):\n", " if pd.isna(value) or value is None:\n", " return None\n", " \n", " # Extract the value after colon if present\n", " if isinstance(value, str) and ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Try to convert to float\n", " try:\n", " # Remove any non-numeric characters except decimal point\n", " cleaned_value = ''.join(c for c in value if c.isdigit() or c == '.')\n", " age = float(cleaned_value)\n", " return age\n", " except:\n", " return None\n", "\n", "def convert_gender(value):\n", " if pd.isna(value) or value is None:\n", " return None\n", " \n", " # Extract the value after colon if present\n", " if isinstance(value, str) and ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Convert to binary (0 for female, 1 for male)\n", " if value.lower() in ['female', 'f', 'woman']:\n", " return 0\n", " elif value.lower() in ['male', 'm', 'man']:\n", " return 1\n", " else:\n", " return None\n", "\n", "# Assuming based on typical GEO datasets:\n", "# We need to check if these rows actually contain the needed information\n", "trait_row = 1 # Typically disease status is in row 1\n", "age_row = None # Often age data is not provided\n", "gender_row = None # Often gender data is not provided\n", "\n", "# Check if trait_row is valid (meaning trait data is available)\n", "is_trait_available = trait_row is not None\n", "\n", "# Save metadata using the validate_and_save_cohort_info function\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# Extract clinical features if trait data is available\n", "if trait_row is not None:\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted features\n", " preview = preview_df(selected_clinical_df)\n", " print(\"\\nPreview of extracted clinical features:\")\n", " print(preview)\n", " \n", " # Save the clinical data to the specified file\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=True)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "else:\n", " print(\"Trait data is not available. Skipping clinical feature extraction.\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }