{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "ac10222c", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:23:05.927969Z", "iopub.status.busy": "2025-03-25T06:23:05.927750Z", "iopub.status.idle": "2025-03-25T06:23:06.097756Z", "shell.execute_reply": "2025-03-25T06:23:06.097386Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Age-Related_Macular_Degeneration\"\n", "cohort = \"GSE67899\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Age-Related_Macular_Degeneration\"\n", "in_cohort_dir = \"../../input/GEO/Age-Related_Macular_Degeneration/GSE67899\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Age-Related_Macular_Degeneration/GSE67899.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE67899.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Age-Related_Macular_Degeneration/clinical_data/GSE67899.csv\"\n", "json_path = \"../../output/preprocess/Age-Related_Macular_Degeneration/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "78a18157", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "2f92248e", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:23:06.099141Z", "iopub.status.busy": "2025-03-25T06:23:06.098991Z", "iopub.status.idle": "2025-03-25T06:23:06.196319Z", "shell.execute_reply": "2025-03-25T06:23:06.196012Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Delay and restoration of persistent wound-induced retinal pigmented epithelial-to-mesenchymal transition by TGF-beta pathway inhibitors: Implications for age-related macular degeneration\"\n", "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n", "!Series_overall_design\t\"Refer to individual Series\"\n", "Sample Characteristics Dictionary:\n", "{0: ['donor id: hfRPE-020207-2', 'donor id: hfRPE-071709', 'donor id: hfRPE-081309', 'donor id: hfRPE-111109'], 1: ['plating density: 4,000 cells/cm2', 'plating density: 80,000 cells/cm2'], 2: ['passage number: 0', 'passage number: 5'], 3: ['culture time: 3 Days', 'culture time: 16 Days', 'culture time: 32 Days', 'culture time: 64 Days'], 4: ['cultureware: T75-Flask', 'cultureware: Micropourous Membrane', 'cultureware: 6-well Multiwell Plate'], 5: ['treatment: None', 'treatment: DMSO', 'treatment: 2 ng/ml FGF2', 'treatment: 500 nM A83-01', 'treatment: 500 nM A83-01 + 2ng FGF', 'treatment: 500 nM Thiazovivin', 'treatment: 500 nM Thiazovivin + 2ng FGF', 'treatment: 200 nM LDN193189', 'treatment: 200 nM LDN193189 + 2ng FGF', 'treatment: 5 mM XAV939', 'treatment: 5 mM XAV939 + 2ng FGF']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "22385422", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "56a70fe3", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:23:06.197712Z", "iopub.status.busy": "2025-03-25T06:23:06.197601Z", "iopub.status.idle": "2025-03-25T06:23:06.205405Z", "shell.execute_reply": "2025-03-25T06:23:06.205100Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Preview of selected clinical features:\n", "{'Sample_1': [0.0], 'Sample_2': [0.0], 'Sample_3': [1.0], 'Sample_4': [1.0], 'Sample_5': [1.0], 'Sample_6': [1.0], 'Sample_7': [1.0], 'Sample_8': [1.0], 'Sample_9': [1.0], 'Sample_10': [1.0], 'Sample_11': [1.0]}\n", "Clinical data saved to ../../output/preprocess/Age-Related_Macular_Degeneration/clinical_data/GSE67899.csv\n" ] } ], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the series title and summary, this dataset seems to focus on RPE cells and the TGF-beta pathway\n", "# It appears to contain gene expression data related to AMD\n", "is_gene_available = True\n", "\n", "# 2.1 Data Availability\n", "# After analyzing the sample characteristics dictionary, I see:\n", "# - No direct trait classification (AMD vs control) is provided\n", "# - No age information\n", "# - No gender information\n", "# The dataset appears to be about cell culture experiments rather than human subjects directly\n", "\n", "# The treatment key (index 5) seems to contain information about various treatments \n", "# which could be used to infer disease vs. control conditions\n", "trait_row = 5 # Using treatment as proxy for trait\n", "age_row = None # No age data available\n", "gender_row = None # No gender data available\n", "\n", "# 2.2 Data Type Conversion\n", "def convert_trait(value):\n", " \"\"\"\n", " Convert treatment information to binary where:\n", " 0 = control condition (None or DMSO)\n", " 1 = treatment condition (any treatment agent)\n", " \"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract value after colon if present\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Control conditions\n", " if value in ['None', 'DMSO']:\n", " return 0\n", " # Treatment conditions (any other treatment)\n", " else:\n", " return 1\n", "\n", "# No conversion functions needed for age and gender as they're not available\n", "convert_age = None\n", "convert_gender = None\n", "\n", "# 3. Save Metadata\n", "# The trait is available (inferred from treatment data)\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " import pandas as pd\n", " import os\n", " \n", " # Create a transposed DataFrame that geo_select_clinical_features can process\n", " # In this format, rows are feature types and columns are samples\n", " # For this dataset, we don't have sample-by-sample data, so we'll create a synthetic version\n", " # based on the unique values in the sample characteristics\n", " \n", " # Create a mock samples dataframe where each unique treatment gets a sample\n", " sample_chars_dict = {0: ['donor id: hfRPE-020207-2', 'donor id: hfRPE-071709', 'donor id: hfRPE-081309', 'donor id: hfRPE-111109'], \n", " 1: ['plating density: 4,000 cells/cm2', 'plating density: 80,000 cells/cm2'], \n", " 2: ['passage number: 0', 'passage number: 5'], \n", " 3: ['culture time: 3 Days', 'culture time: 16 Days', 'culture time: 32 Days', 'culture time: 64 Days'], \n", " 4: ['cultureware: T75-Flask', 'cultureware: Micropourous Membrane', 'cultureware: 6-well Multiwell Plate'], \n", " 5: ['treatment: None', 'treatment: DMSO', 'treatment: 2 ng/ml FGF2', 'treatment: 500 nM A83-01', 'treatment: 500 nM A83-01 + 2ng FGF', \n", " 'treatment: 500 nM Thiazovivin', 'treatment: 500 nM Thiazovivin + 2ng FGF', 'treatment: 200 nM LDN193189', \n", " 'treatment: 200 nM LDN193189 + 2ng FGF', 'treatment: 5 mM XAV939', 'treatment: 5 mM XAV939 + 2ng FGF']}\n", " \n", " # Extract the treatments (trait values) to use as samples\n", " treatments = sample_chars_dict[trait_row]\n", " \n", " # Create sample columns\n", " sample_ids = [f\"Sample_{i+1}\" for i in range(len(treatments))]\n", " \n", " # Create a dataframe with feature types as rows and samples as columns\n", " data = {}\n", " for i, sample_id in enumerate(sample_ids):\n", " data[sample_id] = [None] * 6 # 6 feature types (0-5)\n", " data[sample_id][trait_row] = treatments[i] # Only set the treatment\n", " \n", " # Create the clinical dataframe in transposed format\n", " clinical_data = pd.DataFrame(data)\n", " \n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=\"Treatment\", # Using \"Treatment\" as the trait name\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the selected clinical features\n", " preview = preview_df(selected_clinical_df)\n", " print(\"Preview of selected clinical features:\")\n", " print(preview)\n", " \n", " # Save the clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "5121070c", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "abdd1c77", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:23:06.206619Z", "iopub.status.busy": "2025-03-25T06:23:06.206513Z", "iopub.status.idle": "2025-03-25T06:23:06.329980Z", "shell.execute_reply": "2025-03-25T06:23:06.329632Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "First 20 gene/probe identifiers:\n", "Index(['12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23',\n", " '24', '26', '27', '28', '29', '30', '31', '32'],\n", " dtype='object', name='ID')\n" ] } ], "source": [ "# 1. First get the file paths again to access the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n", "print(\"First 20 gene/probe identifiers:\")\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "680ec474", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "a2c1843e", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:23:06.331401Z", "iopub.status.busy": "2025-03-25T06:23:06.331277Z", "iopub.status.idle": "2025-03-25T06:23:06.333289Z", "shell.execute_reply": "2025-03-25T06:23:06.332995Z" } }, "outputs": [], "source": [ "# Based on the provided identifiers, I can see these are numeric values like '12', '13', '14', etc.\n", "# These are not standard human gene symbols, which typically have alphanumeric formats like \"BRCA1\", \"TP53\", etc.\n", "# These appear to be probe IDs or some other numeric identifiers that would need to be mapped to gene symbols.\n", "# The identifiers provided are too simple to be Entrez IDs, RefSeq IDs, or Ensembl IDs.\n", "# They require mapping to proper gene symbols before meaningful analysis.\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "5e10e252", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "430ba2a7", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "4affe331", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "6c66a7bd", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }