{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "63b40284", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:15:18.160228Z", "iopub.status.busy": "2025-03-25T05:15:18.160045Z", "iopub.status.idle": "2025-03-25T05:15:18.331008Z", "shell.execute_reply": "2025-03-25T05:15:18.330621Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Essential_Thrombocythemia\"\n", "cohort = \"GSE174060\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Essential_Thrombocythemia\"\n", "in_cohort_dir = \"../../input/GEO/Essential_Thrombocythemia/GSE174060\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Essential_Thrombocythemia/GSE174060.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Essential_Thrombocythemia/gene_data/GSE174060.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Essential_Thrombocythemia/clinical_data/GSE174060.csv\"\n", "json_path = \"../../output/preprocess/Essential_Thrombocythemia/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "70dde2f5", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "96a2ae91", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:15:18.332502Z", "iopub.status.busy": "2025-03-25T05:15:18.332347Z", "iopub.status.idle": "2025-03-25T05:15:18.525769Z", "shell.execute_reply": "2025-03-25T05:15:18.525443Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Gene expression data from CD34+ BMMCs/PBMCs from MPN patients vs. healthy controls\"\n", "!Series_summary\t\"Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) consist of primary myelofibrosis (PMF), polycythemia vera (PV), essential thrombocythemia (ET) and seconday myelofibrosis (SMF), comprising post-ET-MF(pET-MF) and post-PV-MF(pPV-MF).\"\n", "!Series_summary\t\"In this dataset, we compare the gene expression data of bone marrow or peripheral blood mononuclear cells (BMMCs/PBMCs) of CD34+ cells from MPN patients and healthy donors.\"\n", "!Series_summary\t\"\"\n", "!Series_overall_design\t\"36 samples (6 ET, 11 PV, 9 PMF, 4 secondary MF (SMF) patients and 6 healthy donors) were analyzed\"\n", "Sample Characteristics Dictionary:\n", "{0: ['tissue: bone marrow', 'tissue: peripheral blood'], 1: ['genotype: JAK2V617F', 'genotype: CALRins5', 'genotype: CALRdel52', 'genotype: MPLW515L', 'genotype: triple-negative', 'genotype: N/A'], 2: ['age: 41', 'age: 53', 'age: 52', 'age: 47', 'age: 19', 'age: 33', 'age: 58', 'age: 76', 'age: 68', 'age: 65', 'age: 61', 'age: 45', 'age: 42', 'age: 36', 'age: 69', 'age: 74', 'age: 75', 'age: 62', 'age: 72', 'age: 71', 'age: 43', 'age: 56', 'age: 29', 'age: 27', 'age: 28', 'age: 32'], 3: ['Sex: F', 'Sex: M'], 4: ['diagnosis: ET', 'diagnosis: PV', 'diagnosis: PMF', 'diagnosis: pPV-MF', 'diagnosis: pET-MF', 'diagnosis: healthy control']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "c3ac0df8", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "77942f46", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:15:18.526976Z", "iopub.status.busy": "2025-03-25T05:15:18.526864Z", "iopub.status.idle": "2025-03-25T05:15:18.532239Z", "shell.execute_reply": "2025-03-25T05:15:18.531929Z" } }, "outputs": [], "source": [ "import pandas as pd\n", "import os\n", "import numpy as np\n", "from typing import Dict, Any, Optional, Callable\n", "import json\n", "\n", "# 1. Gene Expression Data Availability\n", "# Based on the Series title \"Gene expression data from CD34+ BMMCs/PBMCs from MPN patients vs. healthy controls\"\n", "# and the data type description, it appears this dataset contains gene expression data.\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "# Trait (Essential Thrombocythemia) is available in the 'diagnosis' field (key 4)\n", "trait_row = 4\n", "\n", "# Age is available in key 2\n", "age_row = 2\n", "\n", "# Gender is available in key 3\n", "gender_row = 3\n", "\n", "# 2.2 Data Type Conversion Functions\n", "def convert_trait(value):\n", " \"\"\"\n", " Convert the trait value to binary (0 or 1).\n", " 0 = No Essential Thrombocythemia, 1 = Has Essential Thrombocythemia\n", " \"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract value after the colon and strip whitespace\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Check if the value indicates Essential Thrombocythemia\n", " if value.lower() == \"et\":\n", " return 1\n", " elif value.lower() in [\"pv\", \"pmf\", \"ppv-mf\", \"pet-mf\", \"healthy control\"]:\n", " return 0\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"\n", " Convert the age value to continuous numeric data.\n", " \"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract value after the colon and strip whitespace\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " try:\n", " return float(value)\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"\n", " Convert gender value to binary (0 for female, 1 for male).\n", " \"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract value after the colon and strip whitespace\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " if value.upper() == \"F\":\n", " return 0\n", " elif value.upper() == \"M\":\n", " return 1\n", " return None\n", "\n", "# 3. Save Metadata - Initial Filtering\n", "# Check if trait data is available\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction (if trait_row is not None)\n", "if trait_row is not None:\n", " # Assuming clinical_data is a DataFrame from a previous step that contains the sample characteristics\n", " # We need to first load it from the cohort directory\n", " clinical_data_path = os.path.join(in_cohort_dir, \"clinical_data.csv\")\n", " if os.path.exists(clinical_data_path):\n", " clinical_data = pd.read_csv(clinical_data_path)\n", "\n", " # Extract clinical features using the geo_select_clinical_features function\n", " clinical_features = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", "\n", " # Preview the extracted features\n", " preview = preview_df(clinical_features)\n", " print(\"Preview of clinical features:\", preview)\n", "\n", " # Create directory if it doesn't exist\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " \n", " # Save clinical features to CSV\n", " clinical_features.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical features saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "8235571a", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "c83485d7", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:15:18.533219Z", "iopub.status.busy": "2025-03-25T05:15:18.533118Z", "iopub.status.idle": "2025-03-25T05:15:18.797044Z", "shell.execute_reply": "2025-03-25T05:15:18.796652Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "First 20 gene/probe identifiers:\n", "Index(['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1',\n", " 'TC01000004.hg.1', 'TC01000005.hg.1', 'TC01000006.hg.1',\n", " 'TC01000007.hg.1', 'TC01000008.hg.1', 'TC01000009.hg.1',\n", " 'TC01000010.hg.1', 'TC01000011.hg.1', 'TC01000012.hg.1',\n", " 'TC01000013.hg.1', 'TC01000014.hg.1', 'TC01000015.hg.1',\n", " 'TC01000016.hg.1', 'TC01000017.hg.1', 'TC01000018.hg.1',\n", " 'TC01000019.hg.1', 'TC01000020.hg.1'],\n", " dtype='object', name='ID')\n" ] } ], "source": [ "# 1. First get the file paths again to access the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n", "print(\"First 20 gene/probe identifiers:\")\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "6968571f", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "750c8959", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:15:18.798507Z", "iopub.status.busy": "2025-03-25T05:15:18.798394Z", "iopub.status.idle": "2025-03-25T05:15:18.800212Z", "shell.execute_reply": "2025-03-25T05:15:18.799936Z" } }, "outputs": [], "source": [ "# Looking at the gene identifiers, I can see they follow a pattern like \"TC01000001.hg.1\"\n", "# These are not standard human gene symbols (like BRCA1, TP53, etc.)\n", "# They appear to be probe IDs from a microarray platform, likely Affymetrix\n", "# These will need to be mapped to standard human gene symbols\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "245836c7", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "141869ab", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:15:18.801304Z", "iopub.status.busy": "2025-03-25T05:15:18.801205Z", "iopub.status.idle": "2025-03-25T05:15:24.727712Z", "shell.execute_reply": "2025-03-25T05:15:24.727378Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene annotation preview:\n", "{'ID': ['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1'], 'probeset_id': ['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'strand': ['+', '+', '+', '+', '+'], 'start': ['11869', '29554', '69091', '160446', '317811'], 'stop': ['14409', '31109', '70008', '161525', '328581'], 'total_probes': [49.0, 60.0, 30.0, 30.0, 191.0], 'gene_assignment': ['NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000456328 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // 9p24.3 // 100287596 /// ENST00000456328 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102', 'ENST00000408384 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000408384 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000408384 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000408384 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000469289 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000469289 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000469289 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000469289 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000473358 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000473358 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000473358 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000473358 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// OTTHUMT00000002841 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002841 // RP11-34P13.3 // NULL // --- // --- /// OTTHUMT00000002840 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002840 // RP11-34P13.3 // NULL // --- // ---', 'NM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000335137 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// OTTHUMT00000003223 // OR4F5 // NULL // --- // ---', 'OTTHUMT00000007169 // OTTHUMG00000002525 // NULL // --- // --- /// OTTHUMT00000007169 // RP11-34P13.9 // NULL // --- // ---', 'NR_028322 // LOC100132287 // uncharacterized LOC100132287 // 1p36.33 // 100132287 /// NR_028327 // LOC100133331 // uncharacterized LOC100133331 // 1p36.33 // 100133331 /// ENST00000425496 // LOC101060495 // uncharacterized LOC101060495 // --- // 101060495 /// ENST00000425496 // LOC101060494 // uncharacterized LOC101060494 // --- // 101060494 /// ENST00000425496 // LOC101059936 // uncharacterized LOC101059936 // --- // 101059936 /// ENST00000425496 // LOC100996502 // uncharacterized LOC100996502 // --- // 100996502 /// ENST00000425496 // LOC100996328 // uncharacterized LOC100996328 // --- // 100996328 /// ENST00000425496 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// NR_028325 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// OTTHUMT00000346878 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346878 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346879 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346879 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346880 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346880 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346881 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346881 // RP4-669L17.10 // NULL // --- // ---'], 'mrna_assignment': ['NR_046018 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 (DDX11L1), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aaa.3 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc010nxq.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc010nxr.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0', 'ENST00000408384 // ENSEMBL // ncrna:miRNA chromosome:GRCh37:1:30366:30503:1 gene:ENSG00000221311 gene_biotype:miRNA transcript_biotype:miRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000469289 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:30267:31109:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000473358 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:29554:31097:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002841 // Havana transcript // cdna:all chromosome:VEGA52:1:30267:31109:1 Gene:OTTHUMG00000000959 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002840 // Havana transcript // cdna:all chromosome:VEGA52:1:29554:31097:1 Gene:OTTHUMG00000000959 // chr1 // 100 // 100 // 0 // --- // 0', 'NM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000335137 // ENSEMBL // cdna:known chromosome:GRCh37:1:69091:70008:1 gene:ENSG00000186092 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aal.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000003223 // Havana transcript // cdna:all chromosome:VEGA52:1:69091:70008:1 Gene:OTTHUMG00000001094 // chr1 // 100 // 100 // 0 // --- // 0', 'ENST00000496488 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:160446:161525:1 gene:ENSG00000241599 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000007169 // Havana transcript // cdna:all chromosome:VEGA52:1:160446:161525:1 Gene:OTTHUMG00000002525 // chr1 // 100 // 100 // 0 // --- // 0', 'NR_028322 // RefSeq // Homo sapiens uncharacterized LOC100132287 (LOC100132287), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// NR_028327 // RefSeq // Homo sapiens uncharacterized LOC100133331 (LOC100133331), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000425496 // ENSEMBL // ensembl:lincRNA chromosome:GRCh37:1:324756:328453:1 gene:ENSG00000237094 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000426316 // ENSEMBL // [retired] cdna:known chromosome:GRCh37:1:317811:328455:1 gene:ENSG00000240876 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 100 // 0 // --- // 0 /// NR_028325 // RefSeq // Homo sapiens uncharacterized LOC100132062 (LOC100132062), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// uc009vjk.2 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc021oeh.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc021oei.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346906 // Havana transcript // [retired] cdna:all chromosome:VEGA50:1:317811:328455:1 Gene:OTTHUMG00000156972 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346878 // Havana transcript // cdna:all chromosome:VEGA52:1:320162:321056:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346879 // Havana transcript // cdna:all chromosome:VEGA52:1:320162:324461:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346880 // Havana transcript // cdna:all chromosome:VEGA52:1:317720:324873:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346881 // Havana transcript // cdna:all chromosome:VEGA52:1:322672:324955:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0'], 'swissprot': ['NR_046018 // B7ZGX0 /// NR_046018 // B7ZGX2 /// NR_046018 // B7ZGX7 /// NR_046018 // B7ZGX8 /// ENST00000456328 // B7ZGX0 /// ENST00000456328 // B7ZGX2 /// ENST00000456328 // B7ZGX3 /// ENST00000456328 // B7ZGX7 /// ENST00000456328 // B7ZGX8 /// ENST00000456328 // Q6ZU42', '---', 'NM_001005484 // Q8NH21 /// ENST00000335137 // Q8NH21', '---', 'NR_028325 // B4DYM5 /// NR_028325 // B4E0H4 /// NR_028325 // B4E3X0 /// NR_028325 // B4E3X2 /// NR_028325 // Q6ZQS4'], 'unigene': ['NR_046018 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.719844 // brain| testis| normal /// ENST00000456328 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.618434 // testis| normal', 'ENST00000469289 // Hs.622486 // eye| normal| adult /// ENST00000469289 // Hs.729632 // testis| normal /// ENST00000469289 // Hs.742718 // testis /// ENST00000473358 // Hs.622486 // eye| normal| adult /// ENST00000473358 // Hs.729632 // testis| normal /// ENST00000473358 // Hs.742718 // testis', 'NM_001005484 // Hs.554500 // --- /// ENST00000335137 // Hs.554500 // ---', '---', 'NR_028322 // Hs.446409 // adrenal gland| blood| bone| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| lymph node| mouth| pharynx| placenta| prostate| skin| testis| thymus| thyroid| uterus| bladder carcinoma| chondrosarcoma| colorectal tumor| germ cell tumor| head and neck tumor| kidney tumor| leukemia| lung tumor| normal| primitive neuroectodermal tumor of the CNS| uterine tumor|embryoid body| blastocyst| fetus| neonate| adult /// NR_028327 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000425496 // Hs.744556 // mammary gland| normal| adult /// ENST00000425496 // Hs.660700 // eye| placenta| testis| normal| adult /// ENST00000425496 // Hs.518952 // blood| brain| intestine| lung| mammary gland| mouth| muscle| pharynx| placenta| prostate| spleen| testis| thymus| thyroid| trachea| breast (mammary gland) tumor| colorectal tumor| head and neck tumor| leukemia| lung tumor| normal| prostate cancer| fetus| adult /// ENST00000425496 // Hs.742131 // testis| normal| adult /// ENST00000425496 // Hs.636102 // uterus| uterine tumor /// ENST00000425496 // Hs.646112 // brain| intestine| larynx| lung| mouth| prostate| testis| thyroid| colorectal tumor| head and neck tumor| lung tumor| normal| prostate cancer| adult /// ENST00000425496 // Hs.647795 // brain| lung| lung tumor| adult /// ENST00000425496 // Hs.684307 // --- /// ENST00000425496 // Hs.720881 // testis| normal /// ENST00000425496 // Hs.729353 // brain| lung| placenta| testis| trachea| lung tumor| normal| fetus| adult /// ENST00000425496 // Hs.735014 // ovary| ovarian tumor /// NR_028325 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| kidney tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult'], 'category': ['main', 'main', 'main', 'main', 'main'], 'locus type': ['Coding', 'Coding', 'Coding', 'Coding', 'Coding'], 'notes': ['---', '---', '---', '---', '2 retired transcript(s) from ENSEMBL, Havana transcript'], 'SPOT_ID': ['chr1(+):11869-14409', 'chr1(+):29554-31109', 'chr1(+):69091-70008', 'chr1(+):160446-161525', 'chr1(+):317811-328581']}\n" ] } ], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "497f6d52", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "05fa6a3a", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:15:24.729031Z", "iopub.status.busy": "2025-03-25T05:15:24.728894Z", "iopub.status.idle": "2025-03-25T05:15:25.570835Z", "shell.execute_reply": "2025-03-25T05:15:25.570378Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene mapping preview:\n", "{'ID': ['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1'], 'Gene': ['NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000456328 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // 9p24.3 // 100287596 /// ENST00000456328 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102', 'ENST00000408384 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000408384 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000408384 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000408384 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000469289 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000469289 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000469289 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000469289 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000473358 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000473358 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000473358 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000473358 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// OTTHUMT00000002841 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002841 // RP11-34P13.3 // NULL // --- // --- /// OTTHUMT00000002840 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002840 // RP11-34P13.3 // NULL // --- // ---', 'NM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000335137 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// OTTHUMT00000003223 // OR4F5 // NULL // --- // ---', 'OTTHUMT00000007169 // OTTHUMG00000002525 // NULL // --- // --- /// OTTHUMT00000007169 // RP11-34P13.9 // NULL // --- // ---', 'NR_028322 // LOC100132287 // uncharacterized LOC100132287 // 1p36.33 // 100132287 /// NR_028327 // LOC100133331 // uncharacterized LOC100133331 // 1p36.33 // 100133331 /// ENST00000425496 // LOC101060495 // uncharacterized LOC101060495 // --- // 101060495 /// ENST00000425496 // LOC101060494 // uncharacterized LOC101060494 // --- // 101060494 /// ENST00000425496 // LOC101059936 // uncharacterized LOC101059936 // --- // 101059936 /// ENST00000425496 // LOC100996502 // uncharacterized LOC100996502 // --- // 100996502 /// ENST00000425496 // LOC100996328 // uncharacterized LOC100996328 // --- // 100996328 /// ENST00000425496 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// NR_028325 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// OTTHUMT00000346878 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346878 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346879 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346879 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346880 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346880 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346881 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346881 // RP4-669L17.10 // NULL // --- // ---']}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Gene data shape after mapping: (71527, 36)\n", "First 5 gene symbols after mapping:\n", "Index(['A-', 'A-2', 'A-52', 'A-575C2', 'A-E'], dtype='object', name='Gene')\n" ] } ], "source": [ "# 1. Identify which columns in gene_annotation correspond to gene identifiers and gene symbols\n", "# Looking at the gene_annotation preview, we can see:\n", "# - The 'ID' column matches the gene identifiers in gene_data.index (e.g., TC01000001.hg.1)\n", "# - The 'gene_assignment' column contains gene symbol information\n", "\n", "# 2. Get gene mapping dataframe\n", "gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')\n", "\n", "# Print the first few rows of the mapping to verify\n", "print(\"Gene mapping preview:\")\n", "print(preview_df(gene_mapping))\n", "\n", "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "\n", "# Print shape information of the mapped gene data\n", "print(f\"Gene data shape after mapping: {gene_data.shape}\")\n", "print(\"First 5 gene symbols after mapping:\")\n", "print(gene_data.index[:5])\n" ] }, { "cell_type": "markdown", "id": "fc7f999f", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 8, "id": "179dfed0", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:15:25.572409Z", "iopub.status.busy": "2025-03-25T05:15:25.572301Z", "iopub.status.idle": "2025-03-25T05:15:38.759019Z", "shell.execute_reply": "2025-03-25T05:15:38.758399Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalizing gene symbols...\n", "Gene data shape after normalization: (24018, 36)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Normalized gene data saved to ../../output/preprocess/Essential_Thrombocythemia/gene_data/GSE174060.csv\n", "Loading the original clinical data...\n", "Extracting clinical features...\n", "Clinical data preview:\n", "{'GSM5285411': [1.0, 41.0, 0.0], 'GSM5285412': [1.0, 53.0, 0.0], 'GSM5285413': [1.0, 52.0, 1.0], 'GSM5285414': [1.0, 47.0, 1.0], 'GSM5285415': [1.0, 19.0, 1.0], 'GSM5285416': [1.0, 33.0, 0.0], 'GSM5285417': [0.0, 58.0, 1.0], 'GSM5285418': [0.0, 76.0, 1.0], 'GSM5285419': [0.0, 68.0, 1.0], 'GSM5285420': [0.0, 65.0, 0.0], 'GSM5285421': [0.0, 61.0, 1.0], 'GSM5285422': [0.0, 45.0, 1.0], 'GSM5285423': [0.0, 68.0, 0.0], 'GSM5285424': [0.0, 42.0, 1.0], 'GSM5285425': [0.0, 36.0, 0.0], 'GSM5285426': [0.0, 42.0, 1.0], 'GSM5285427': [0.0, 69.0, 0.0], 'GSM5285428': [0.0, 45.0, 1.0], 'GSM5285429': [0.0, 74.0, 1.0], 'GSM5285430': [0.0, 75.0, 1.0], 'GSM5285431': [0.0, 62.0, 1.0], 'GSM5285432': [0.0, 58.0, 1.0], 'GSM5285433': [0.0, 76.0, 1.0], 'GSM5285434': [0.0, 72.0, 0.0], 'GSM5285435': [0.0, 61.0, 0.0], 'GSM5285436': [0.0, 76.0, 1.0], 'GSM5285437': [0.0, 71.0, 0.0], 'GSM5285438': [0.0, 43.0, 0.0], 'GSM5285439': [0.0, 56.0, 0.0], 'GSM5285440': [0.0, 68.0, 0.0], 'GSM5285441': [0.0, 29.0, 0.0], 'GSM5285442': [0.0, 27.0, 0.0], 'GSM5285443': [0.0, 28.0, 1.0], 'GSM5285444': [0.0, 28.0, 1.0], 'GSM5285445': [0.0, 32.0, 0.0], 'GSM5285446': [0.0, 27.0, 0.0]}\n", "Clinical data saved to ../../output/preprocess/Essential_Thrombocythemia/clinical_data/GSE174060.csv\n", "Linking clinical and genetic data...\n", "Linked data shape: (36, 24021)\n", "Handling missing values...\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Linked data shape after handling missing values: (36, 24021)\n", "Checking for bias in trait distribution...\n", "For the feature 'Essential_Thrombocythemia', the least common label is '1.0' with 6 occurrences. This represents 16.67% of the dataset.\n", "The distribution of the feature 'Essential_Thrombocythemia' in this dataset is fine.\n", "\n", "Quartiles for 'Age':\n", " 25%: 39.75\n", " 50% (Median): 54.5\n", " 75%: 68.0\n", "Min: 19.0\n", "Max: 76.0\n", "The distribution of the feature 'Age' in this dataset is fine.\n", "\n", "For the feature 'Gender', the least common label is '0.0' with 17 occurrences. This represents 47.22% of the dataset.\n", "The distribution of the feature 'Gender' in this dataset is fine.\n", "\n", "Dataset usability: True\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Linked data saved to ../../output/preprocess/Essential_Thrombocythemia/GSE174060.csv\n" ] } ], "source": [ "# 1. Normalize gene symbols in the gene expression data\n", "print(\"Normalizing gene symbols...\")\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", "\n", "# Save the normalized gene data to a CSV file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Link the clinical and genetic data\n", "print(\"Loading the original clinical data...\")\n", "# Get the matrix file again to ensure we have the proper data\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n", "\n", "print(\"Extracting clinical features...\")\n", "# Use the clinical_data obtained directly from the matrix file\n", "selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", ")\n", "\n", "print(\"Clinical data preview:\")\n", "print(preview_df(selected_clinical_df))\n", "\n", "# Save the clinical data to a CSV file\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "selected_clinical_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# Link clinical and genetic data using the normalized gene data\n", "print(\"Linking clinical and genetic data...\")\n", "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", "# 3. Handle missing values in the linked data\n", "print(\"Handling missing values...\")\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n", "\n", "# 4. Check if trait is biased\n", "print(\"Checking for bias in trait distribution...\")\n", "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 5. Final validation\n", "note = \"Dataset contains gene expression data from patients with Essential Thrombocythemia (ET), Polycythemia Vera (PV), and Primary Myelofibrosis (PMF).\"\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=note\n", ")\n", "\n", "print(f\"Dataset usability: {is_usable}\")\n", "\n", "# 6. Save linked data if usable\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Dataset is not usable for trait-gene association studies due to bias or other issues.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }