# Path Configuration from tools.preprocess import * # Processing context trait = "Asthma" cohort = "GSE182797" # Input paths in_trait_dir = "../DATA/GEO/Asthma" in_cohort_dir = "../DATA/GEO/Asthma/GSE182797" # Output paths out_data_file = "./output/preprocess/1/Asthma/GSE182797.csv" out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE182797.csv" out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE182797.csv" json_path = "./output/preprocess/1/Asthma/cohort_info.json" # STEP 1 # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Gene Expression Data Availability is_gene_available = True # Based on "Transcriptomic profiling" and "microarray analyses" # 2) Variable Availability and Data Type Conversion # 2.1 Identify rows trait_row = 0 # "diagnosis: ..." contains multiple distinct values including "adult-onset asthma" age_row = 2 # "age: ..." contains multiple numerical values gender_row = None # Only "gender: Female" found, no variability => not available # 2.2 Define conversion functions def convert_trait(value: str): """ Convert diagnosis data to a binary label: adult-onset asthma -> 1, otherwise (healthy/IEI) -> 0, unknown -> None """ parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip().lower() if 'adult-onset asthma' in val: return 1 elif 'healthy' in val or 'iei' in val: return 0 return None def convert_age(value: str): """Convert age data to a float. Unknown or invalid entries -> None.""" parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip() try: return float(val) except ValueError: return None def convert_gender(value: str): """ Convert gender data to binary (female->0, male->1). Not used here because gender_row is None, but defined for completeness. """ parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip().lower() if val == 'female': return 0 elif val == 'male': return 1 return None # 3) Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical Feature Extraction (only if trait data is available) if trait_row is not None: # 'clinical_data' is assumed to be the DataFrame containing sample characteristics selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save the selected clinical data preview = preview_df(selected_clinical_df) print("Preview of extracted clinical data:", preview) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers (e.g., 'A_19_P00315452') are microarray probe IDs # and do not appear to be standard human gene symbols. # Therefore, they need to be mapped to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify columns in gene_annotation for probe IDs and gene symbols probe_col = 'ID' gene_symbol_col = 'GENE_SYMBOL' # 2. Get the mapping of probe IDs to gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col) # 3. Convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Check the shape or a small preview of the mapped gene_data print("Mapped gene_data shape:", gene_data.shape) # STEP 7: Data Normalization and Linking # 1) Normalize gene symbols normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2) Read the previously saved clinical data (which should have shape (2 rows) x (80 columns)) # so that it aligns correctly with normalized_gene_data. temp_clinical = pd.read_csv(out_clinical_data_file) # Use the first row as header temp_clinical.index = [trait, "Age"] temp_clinical.columns = normalized_gene_data.columns # Match with the 80 sample IDs # Link the clinical and gene data linked_data = geo_link_clinical_genetic_data(temp_clinical, normalized_gene_data) # 3) Handle missing values processed_data = handle_missing_values(linked_data, trait_col=trait) # 4) Remove biased demographic features; check whether our trait is overly biased trait_biased, final_data = judge_and_remove_biased_features(processed_data, trait=trait) # 5) Conduct final dataset validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Final processed dataset for trait and gene expression." ) # 6) If the dataset is usable, save the final linked data if is_usable: final_data.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Dataset not usable. No final linked file was saved.")