# Path Configuration from tools.preprocess import * # Processing context trait = "Asthma" cohort = "GSE184382" # Input paths in_trait_dir = "../DATA/GEO/Asthma" in_cohort_dir = "../DATA/GEO/Asthma/GSE184382" # Output paths out_data_file = "./output/preprocess/1/Asthma/GSE184382.csv" out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE184382.csv" out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE184382.csv" json_path = "./output/preprocess/1/Asthma/cohort_info.json" # STEP 1 # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # This dataset includes transcriptome microarray data. # 2. Variable Availability trait_row = None # No row indicates "asthma" or similar age_row = None # No row for age gender_row = None # No row for gender # 2.2 Data Type Conversion def convert_trait(value: str) -> int: """ Convert raw trait string to a binary indicator (0 or 1). Since trait_row is None, this function won't be used. """ # Placeholder implementation return None def convert_age(value: str) -> float: """ Convert raw age string to a float (continuous). Since age_row is None, this function won't be used. """ # Placeholder implementation return None def convert_gender(value: str) -> int: """ Convert raw gender string to 0 (female) or 1 (male). Since gender_row is None, this function won't be used. """ # Placeholder implementation return None # 3. Save Metadata # Determine trait availability is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip feature extraction. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers (e.g., "A_19_P...", "(+)E1A_r60_...", "3xSLv1") are not standard human gene symbols. # They appear to be array or custom IDs that require mapping to gene symbols. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1 & 2. Identify the columns in the annotation corresponding to the gene expression IDs and the gene symbols # Here, 'ID' holds probe identifiers matching those in 'gene_data' # and 'GENE_SYMBOL' holds the corresponding gene symbols. gene_mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL") # 3. Convert probe-level measurements to gene-level data using the mapping. gene_data = apply_gene_mapping(gene_data, gene_mapping_df) # STEP 7: Data Normalization and Linking # We know from prior steps: # - Trait is NOT available (trait_row = None), so no clinical CSV was saved. # - We do have gene data, so we will at least normalize it. # 1) Normalize gene symbols normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2) Since trait is not available, we cannot link or handle clinical data. # We'll set up placeholders for final validation. is_trait_available = False trait_biased = False # Arbitrarily set; the library requires a boolean. # 3) We have no clinical data to integrate; skip missing value handling. # 4) With no trait, we cannot check bias meaningfully. Skipped. # 5) Final dataset validation # The library requires df and is_biased if is_final=True, so we provide an empty DataFrame. # This ensures it records the dataset as not usable. empty_df = pd.DataFrame() is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, # Gene data is available is_trait_available=False, # Trait is not available is_biased=trait_biased, df=empty_df, note="No trait data; final record." ) # 6) If the linked data were usable, we would save it. But here, is_usable will be False. if is_usable: # This block won't run in our scenario, but included for completeness empty_df.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Data not usable (no trait). No final linked file was saved.")