# Path Configuration from tools.preprocess import * # Processing context trait = "Epilepsy" cohort = "GSE199759" # Input paths in_trait_dir = "../DATA/GEO/Epilepsy" in_cohort_dir = "../DATA/GEO/Epilepsy/GSE199759" # Output paths out_data_file = "./output/preprocess/1/Epilepsy/GSE199759.csv" out_gene_data_file = "./output/preprocess/1/Epilepsy/gene_data/GSE199759.csv" out_clinical_data_file = "./output/preprocess/1/Epilepsy/clinical_data/GSE199759.csv" json_path = "./output/preprocess/1/Epilepsy/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # The dataset includes mRNA expression arrays, so we consider gene data available. # 2. Variable Availability and Data Type Conversion # From the sample characteristics dictionary, keys are: # 0 -> tissue # 1 -> gender # 2 -> age # There's no explicit key for "Epilepsy" or a clear way to infer it from the given keys. trait_row = None # Not found age_row = 2 # Multiple age values present gender_row = 1 # Multiple gender values present # Data converters def convert_trait(x: str): # This function won't be used since trait_row is None, but we define it for completeness. return None def convert_age(x: str): # Extract numeric age (continuous) parts = x.split(":") if len(parts) < 2: return None val = parts[1].strip().replace('y', '').strip() try: return float(val) except ValueError: return None def convert_gender(x: str): # Convert gender to binary: male=1, female=0 parts = x.split(":") if len(parts) < 2: return None val = parts[1].strip().lower() if val == 'male': return 1 elif val == 'female': return 0 return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, trait data is not available. We skip this step. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("These identifiers appear to be Agilent microarray probe IDs, not standard human gene symbols.") print("requires_gene_mapping = True") # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP 6: Gene Identifier Mapping probe_col = "ID" symbol_col = "miRNA_ID" # 2. Build the mapping DataFrame from the annotation DataFrame mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col=probe_col, gene_col=symbol_col) # 3. Convert probe-level expression to gene-level expression gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # Show a short preview of the mapped gene expression data print("Preview of mapped gene expression data:") print(gene_data.head()) import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2 if os.path.exists(out_clinical_data_file): # 2) Link the clinical and gene expression data # The CSV was saved with index=False in Step 2, so we reload it as a single-row DataFrame and assign the row index. selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) selected_clinical_df.index = [trait] linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographics if any) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait data successfully extracted; row index fixed at Step 7." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) else: # If the clinical file does not exist, the trait is unavailable empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="No trait data was found; linking and final dataset output are skipped." )