# Path Configuration from tools.preprocess import * # Processing context trait = "Epilepsy" cohort = "GSE64123" # Input paths in_trait_dir = "../DATA/GEO/Epilepsy" in_cohort_dir = "../DATA/GEO/Epilepsy/GSE64123" # Output paths out_data_file = "./output/preprocess/1/Epilepsy/GSE64123.csv" out_gene_data_file = "./output/preprocess/1/Epilepsy/gene_data/GSE64123.csv" out_clinical_data_file = "./output/preprocess/1/Epilepsy/clinical_data/GSE64123.csv" json_path = "./output/preprocess/1/Epilepsy/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability # Based on the background info and the sample dictionary, # this dataset is most likely a gene expression study (not miRNA or methylation). is_gene_available = True # 2. Variable Availability and Data Type Conversion # All rows in the sample characteristics dictionary pertain to time, drug exposure, or concentration. # There is no row indicating a human trait of "Epilepsy," nor any human "age" or "gender." trait_row = None age_row = None gender_row = None is_trait_available = (trait_row is not None) # Although we found no data for these variables, we still define stub conversion functions: def convert_trait(value: str): return None # No trait data available def convert_age(value: str): return None # No age data available def convert_gender(value: str): return None # No gender data available # 3. Save Metadata (Initial Filtering) # Because it's the initial filtering, use is_final=False. validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # This step is skipped because 'trait_row' is None (no trait data). # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These probe IDs (e.g., "10000_at") are not standard human gene symbols, thus mapping is required. print("requires_gene_mapping = True") # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Determine which columns in gene_annotation match the data in gene_data. # - The probe IDs in gene_data match the "ID" column in gene_annotation. # - The gene symbols appear to be in the "Description" column. # 2. Create the mapping dataframe using the library function get_gene_mapping. mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Description") # 3. Convert the probe-level measurements in gene_data to gene-level expressions. gene_data = apply_gene_mapping(gene_data, mapping_df) import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2 if os.path.exists(out_clinical_data_file): # 2) Link the clinical and gene expression data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation (trait is available) is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait data successfully extracted in Step 2." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) else: # If the clinical file does not exist, the trait is unavailable # Perform final validation indicating that we lack trait data empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Arbitrary non-None to skip usage df=empty_df, note="No trait data was found; linking and final dataset output are skipped." )