# Path Configuration from tools.preprocess import * # Processing context trait = "Epilepsy" cohort = "GSE74571" # Input paths in_trait_dir = "../DATA/GEO/Epilepsy" in_cohort_dir = "../DATA/GEO/Epilepsy/GSE74571" # Output paths out_data_file = "./output/preprocess/1/Epilepsy/GSE74571.csv" out_gene_data_file = "./output/preprocess/1/Epilepsy/gene_data/GSE74571.csv" out_clinical_data_file = "./output/preprocess/1/Epilepsy/clinical_data/GSE74571.csv" json_path = "./output/preprocess/1/Epilepsy/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Decide if gene expression data is available is_gene_available = True # From the series and summary, it appears to be gene expression data (RNA, not just miRNA or methylation). # 2. Identify data availability for trait, age, and gender, and define conversion functions. # After reviewing the sample characteristics, there is no mention of "Epilepsy," "age," or "gender." # Thus, set all corresponding row indices to None and create placeholder converters. trait_row = None age_row = None gender_row = None def convert_trait(value: str): # No available data, return None return None def convert_age(value: str): # No available data, return None return None def convert_gender(value: str): # No available data, return None return None # 3. Initial filtering and saving metadata # If trait is not in the dataset (trait_row is None), is_trait_available = False is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Since trait_row is None, we skip the clinical feature extraction. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("These gene identifiers appear to be Illumina probe IDs and not standard human gene symbols.") print("requires_gene_mapping = True") # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns from the annotation that match the probe IDs (same kind of identifiers as gene_data's index) # and the gene symbol. Based on the preview, "ID" seems to be the probe identifier column, and "Symbol" seems to store gene symbols. probe_col = "ID" symbol_col = "Symbol" # 2. Get a mapping dataframe with two columns: probe identifier and gene symbol mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col) # 3. Apply the mapping to convert probe-level data into gene-level data gene_data = apply_gene_mapping(gene_data, mapping_df) # For verification, print out the dimension of the resulting gene_data print("Mapped gene_data shape:", gene_data.shape) import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2 if os.path.exists(out_clinical_data_file): # 2) Link the clinical and gene expression data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation (trait is available) is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait data successfully extracted in Step 2." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) else: # If the clinical file does not exist, the trait is unavailable # Perform final validation indicating that we lack trait data empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Arbitrary non-None to skip usage df=empty_df, note="No trait data was found; linking and final dataset output are skipped." )