{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "97565195", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:17.491567Z", "iopub.status.busy": "2025-03-25T03:51:17.491459Z", "iopub.status.idle": "2025-03-25T03:51:17.650548Z", "shell.execute_reply": "2025-03-25T03:51:17.650232Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Rheumatoid_Arthritis\"\n", "cohort = \"GSE176440\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Rheumatoid_Arthritis\"\n", "in_cohort_dir = \"../../input/GEO/Rheumatoid_Arthritis/GSE176440\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Rheumatoid_Arthritis/GSE176440.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Rheumatoid_Arthritis/gene_data/GSE176440.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Rheumatoid_Arthritis/clinical_data/GSE176440.csv\"\n", "json_path = \"../../output/preprocess/Rheumatoid_Arthritis/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "475a35f1", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "1b633e93", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:17.651936Z", "iopub.status.busy": "2025-03-25T03:51:17.651796Z", "iopub.status.idle": "2025-03-25T03:51:17.854215Z", "shell.execute_reply": "2025-03-25T03:51:17.853873Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Gene expression profiles of CD4+ T cells before and after methotrexate treatment in rheumatoid arthritis patients [Microarray]\"\n", "!Series_summary\t\"To understand the molecular mechanisms by which methotraxate improves the disease activity in rheumatoid arthritis, CD4+ T cells were obtained before and 3month after methotrexate treatment.\"\n", "!Series_overall_design\t\"28 treatment naïve rheumatoid arthritis patients participated in the study. Blood samples were obtained before and 3 months after methotrexate treatment. CD4+ T cells were magnetically purified and subjected the DNA microarray analyses.\"\n", "Sample Characteristics Dictionary:\n", "{0: ['individual: A29', 'individual: A30', 'individual: A34', 'individual: C14', 'individual: C16', 'individual: C19', 'individual: C43', 'individual: C49', 'individual: C71', 'individual: C80', 'individual: C85', 'individual: C87', 'individual: C91', 'individual: C92', 'individual: C93', 'individual: C95', 'individual: C96', 'individual: C100', 'individual: C102', 'individual: C103', 'individual: C107', 'individual: C108', 'individual: C109', 'individual: C111', 'individual: C115', 'individual: C116', 'individual: C117', 'individual: K20'], 1: ['disease state: rheumatoid arthritis patient'], 2: ['treatment: before methotrexate', 'treatment: 3 months after methotrexate'], 3: ['cell type: CD4+ T cells']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "3a650c57", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "e67176c5", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:17.855444Z", "iopub.status.busy": "2025-03-25T03:51:17.855338Z", "iopub.status.idle": "2025-03-25T03:51:17.862265Z", "shell.execute_reply": "2025-03-25T03:51:17.862013Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Preview of selected clinical data:\n", "{0: [nan], 1: [1.0], 2: [nan], 3: [nan]}\n", "Clinical data saved to ../../output/preprocess/Rheumatoid_Arthritis/clinical_data/GSE176440.csv\n" ] } ], "source": [ "import pandas as pd\n", "import os\n", "import json\n", "from typing import Optional, Callable, Dict, Any, List\n", "\n", "# 1. Gene Expression Data Availability\n", "# Based on the background information, this dataset contains microarray data of CD4+ T cells\n", "# which implies gene expression data, not just miRNA or methylation\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Identify keys in the sample characteristics dictionary\n", "\n", "# Trait (Rheumatoid Arthritis)\n", "# From the sample characteristics, all samples are from RA patients (key 1)\n", "trait_row = 1 # \"disease state: rheumatoid arthritis patient\"\n", "\n", "# Treatment status (before/after methotrexate) at key 2 - this could be useful clinical information\n", "# but it's not age or gender\n", "\n", "# Age - Not available in the sample characteristics\n", "age_row = None\n", "\n", "# Gender - Not available in the sample characteristics\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion Functions\n", "def convert_trait(value: str) -> int:\n", " \"\"\"Convert trait value to binary (0 for control, 1 for RA).\"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract the value after the colon if present\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # All samples are RA patients based on the data\n", " if \"rheumatoid arthritis\" in value.lower():\n", " return 1\n", " return None # Default case for unknown values\n", "\n", "def convert_age(value: str) -> Optional[float]:\n", " \"\"\"Convert age value to continuous numeric.\"\"\"\n", " # Not used since age data is not available\n", " return None\n", "\n", "def convert_gender(value: str) -> Optional[int]:\n", " \"\"\"Convert gender value to binary (0 for female, 1 for male).\"\"\"\n", " # Not used since gender data is not available\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine if trait data is available\n", "is_trait_available = trait_row is not None\n", "\n", "# Validate and save cohort information\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# Since trait_row is not None, we need to extract clinical features\n", "if trait_row is not None:\n", " # Load the clinical data (assuming it was saved from a previous step)\n", " clinical_data = pd.DataFrame(\n", " {0: ['individual: A29', 'individual: A30', 'individual: A34', 'individual: C14', 'individual: C16', 'individual: C19', 'individual: C43', 'individual: C49', 'individual: C71', 'individual: C80', 'individual: C85', 'individual: C87', 'individual: C91', 'individual: C92', 'individual: C93', 'individual: C95', 'individual: C96', 'individual: C100', 'individual: C102', 'individual: C103', 'individual: C107', 'individual: C108', 'individual: C109', 'individual: C111', 'individual: C115', 'individual: C116', 'individual: C117', 'individual: K20'], \n", " 1: ['disease state: rheumatoid arthritis patient'] * 28,\n", " 2: ['treatment: before methotrexate', 'treatment: 3 months after methotrexate'] * 14,\n", " 3: ['cell type: CD4+ T cells'] * 28}\n", " )\n", " \n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the selected clinical data\n", " print(\"Preview of selected clinical data:\")\n", " print(preview_df(selected_clinical_df))\n", " \n", " # Create directory if it doesn't exist\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " \n", " # Save the selected clinical data to CSV\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "35fea9d6", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "f227655b", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:17.863298Z", "iopub.status.busy": "2025-03-25T03:51:17.863201Z", "iopub.status.idle": "2025-03-25T03:51:18.129568Z", "shell.execute_reply": "2025-03-25T03:51:18.129204Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056',\n", " 'A_23_P100074', 'A_23_P100092', 'A_23_P100103', 'A_23_P100111',\n", " 'A_23_P100127', 'A_23_P100133', 'A_23_P100141', 'A_23_P100156',\n", " 'A_23_P100177', 'A_23_P100189', 'A_23_P100196', 'A_23_P100203',\n", " 'A_23_P100220', 'A_23_P100240', 'A_23_P10025', 'A_23_P100263'],\n", " dtype='object', name='ID')\n" ] } ], "source": [ "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "54573b79", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "b6cecc13", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:18.130841Z", "iopub.status.busy": "2025-03-25T03:51:18.130718Z", "iopub.status.idle": "2025-03-25T03:51:18.132626Z", "shell.execute_reply": "2025-03-25T03:51:18.132346Z" } }, "outputs": [], "source": [ "# The identifiers in the gene expression data (A_23_P100001, A_23_P100011, etc.) are Agilent microarray \n", "# probe identifiers, not human gene symbols.\n", "# These are probe IDs from an Agilent microarray platform and need to be mapped to human gene symbols.\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "5ccddc43", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "825dcac6", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:18.133704Z", "iopub.status.busy": "2025-03-25T03:51:18.133605Z", "iopub.status.idle": "2025-03-25T03:51:22.153557Z", "shell.execute_reply": "2025-03-25T03:51:22.153192Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene annotation preview:\n", "{'ID': ['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074'], 'SPOT_ID': ['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074'], 'CONTROL_TYPE': ['FALSE', 'FALSE', 'FALSE', 'FALSE', 'FALSE'], 'REFSEQ': ['NM_207446', 'NM_005829', 'NM_014848', 'NM_194272', 'NM_020371'], 'GB_ACC': ['NM_207446', 'NM_005829', 'NM_014848', 'NM_194272', 'NM_020371'], 'GENE': [400451.0, 10239.0, 9899.0, 348093.0, 57099.0], 'GENE_SYMBOL': ['FAM174B', 'AP3S2', 'SV2B', 'RBPMS2', 'AVEN'], 'GENE_NAME': ['family with sequence similarity 174, member B', 'adaptor-related protein complex 3, sigma 2 subunit', 'synaptic vesicle glycoprotein 2B', 'RNA binding protein with multiple splicing 2', 'apoptosis, caspase activation inhibitor'], 'UNIGENE_ID': ['Hs.27373', 'Hs.632161', 'Hs.21754', 'Hs.436518', 'Hs.555966'], 'ENSEMBL_ID': ['ENST00000557398', nan, 'ENST00000557410', 'ENST00000300069', 'ENST00000306730'], 'TIGR_ID': [nan, nan, nan, nan, nan], 'ACCESSION_STRING': ['ref|NM_207446|ens|ENST00000557398|ens|ENST00000553393|ens|ENST00000327355', 'ref|NM_005829|ref|NM_001199058|ref|NR_023361|ref|NR_037582', 'ref|NM_014848|ref|NM_001167580|ens|ENST00000557410|ens|ENST00000330276', 'ref|NM_194272|ens|ENST00000300069|gb|AK127873|gb|AK124123', 'ref|NM_020371|ens|ENST00000306730|gb|AF283508|gb|BC010488'], 'CHROMOSOMAL_LOCATION': ['chr15:93160848-93160789', 'chr15:90378743-90378684', 'chr15:91838329-91838388', 'chr15:65032375-65032316', 'chr15:34158739-34158680'], 'CYTOBAND': ['hs|15q26.1', 'hs|15q26.1', 'hs|15q26.1', 'hs|15q22.31', 'hs|15q14'], 'DESCRIPTION': ['Homo sapiens family with sequence similarity 174, member B (FAM174B), mRNA [NM_207446]', 'Homo sapiens adaptor-related protein complex 3, sigma 2 subunit (AP3S2), transcript variant 1, mRNA [NM_005829]', 'Homo sapiens synaptic vesicle glycoprotein 2B (SV2B), transcript variant 1, mRNA [NM_014848]', 'Homo sapiens RNA binding protein with multiple splicing 2 (RBPMS2), mRNA [NM_194272]', 'Homo sapiens apoptosis, caspase activation inhibitor (AVEN), mRNA [NM_020371]'], 'GO_ID': ['GO:0016020(membrane)|GO:0016021(integral to membrane)', 'GO:0005794(Golgi apparatus)|GO:0006886(intracellular protein transport)|GO:0008565(protein transporter activity)|GO:0016020(membrane)|GO:0016192(vesicle-mediated transport)|GO:0030117(membrane coat)|GO:0030659(cytoplasmic vesicle membrane)|GO:0031410(cytoplasmic vesicle)', 'GO:0001669(acrosomal vesicle)|GO:0006836(neurotransmitter transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0022857(transmembrane transporter activity)|GO:0030054(cell junction)|GO:0030672(synaptic vesicle membrane)|GO:0031410(cytoplasmic vesicle)|GO:0045202(synapse)', 'GO:0000166(nucleotide binding)|GO:0003676(nucleic acid binding)', 'GO:0005515(protein binding)|GO:0005622(intracellular)|GO:0005624(membrane fraction)|GO:0006915(apoptosis)|GO:0006916(anti-apoptosis)|GO:0012505(endomembrane system)|GO:0016020(membrane)'], 'SEQUENCE': ['ATCTCATGGAAAAGCTGGATTCCTCTGCCTTACGCAGAAACACCCGGGCTCCATCTGCCA', 'TCAAGTATTGGCCTGACATAGAGTCCTTAAGACAAGCAAAGACAAGCAAGGCAAGCACGT', 'ATGTCGGCTGTGGAGGGTTAAAGGGATGAGGCTTTCCTTTGTTTAGCAAATCTGTTCACA', 'CCCTGTCAGATAAGTTTAATGTTTAGTTTGAGGCATGAAGAAGAAAAGGGTTTCCATTCT', 'GACCAGCCAGTTTACAAGCATGTCTCAAGCTAGTGTGTTCCATTATGCTCACAGCAGTAA']}\n" ] } ], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "10880b81", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "89dc6c60", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:22.154852Z", "iopub.status.busy": "2025-03-25T03:51:22.154735Z", "iopub.status.idle": "2025-03-25T03:51:22.344821Z", "shell.execute_reply": "2025-03-25T03:51:22.344377Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Preview of mapped gene expression data:\n", "(18488, 56)\n", "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2LD1', 'A2M', 'A2ML1', 'A4GALT', 'A4GNT',\n", " 'AAAS', 'AACS'],\n", " dtype='object', name='Gene')\n" ] } ], "source": [ "# 1. Identify the columns in the gene annotation dataframe\n", "# From the preview, 'ID' in the gene_annotation corresponds to the probe identifiers in gene_data\n", "# 'GENE_SYMBOL' contains the human gene symbols we want to map to\n", "prob_col = 'ID'\n", "gene_col = 'GENE_SYMBOL'\n", "\n", "# 2. Extract the mapping between probe IDs and gene symbols\n", "gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n", "# This function handles the many-to-many relationship as specified\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "\n", "# Preview the result to verify the transformation\n", "print(\"Preview of mapped gene expression data:\")\n", "print(gene_data.shape)\n", "print(gene_data.index[:10]) # Print first 10 gene symbols\n" ] }, { "cell_type": "markdown", "id": "fbb6eb5c", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 8, "id": "dd1bd097", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:22.346326Z", "iopub.status.busy": "2025-03-25T03:51:22.346207Z", "iopub.status.idle": "2025-03-25T03:51:23.003979Z", "shell.execute_reply": "2025-03-25T03:51:23.003614Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized gene data saved to ../../output/preprocess/Rheumatoid_Arthritis/gene_data/GSE176440.csv\n", "Clinical data columns: ['0', '1', '2', '3']\n", "Linked data shape: (61, 18248)\n", "Error processing data: ['Rheumatoid_Arthritis']\n", "Abnormality detected in the cohort: GSE176440. Preprocessing failed.\n", "Dataset not usable for analysis. No linked data saved.\n" ] } ], "source": [ "# 1. Normalize gene symbols in the gene expression data\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "\n", "# Save the normalized gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Load the clinical data that was saved in Step 2\n", "clinical_data_df = pd.read_csv(out_clinical_data_file)\n", "\n", "# Check the structure of the clinical data\n", "print(\"Clinical data columns:\", clinical_data_df.columns.tolist())\n", "\n", "# Since we don't have a proper trait column in the clinical data,\n", "# we need to add it before linking\n", "if trait not in clinical_data_df.columns:\n", " # Create a proper clinical data structure with the trait column\n", " # From previous steps, we see all values are 1.0 for RA patients\n", " clinical_data_df[trait] = 1.0\n", "\n", "# Link the clinical and genetic data on sample IDs\n", "linked_data = geo_link_clinical_genetic_data(clinical_data_df, normalized_gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", "# 3. Handle missing values in the linked data\n", "try:\n", " linked_data = handle_missing_values(linked_data, trait)\n", " print(f\"After handling missing values, linked data shape: {linked_data.shape}\")\n", " \n", " # 4. Determine whether the trait and demographic features are severely biased\n", " trait_biased, linked_data_filtered = judge_and_remove_biased_features(linked_data, trait)\n", " \n", " # 5. Conduct final quality validation and save relevant information\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True,\n", " is_biased=trait_biased, \n", " df=linked_data_filtered,\n", " note=\"Dataset contains gene expression data from CD4+ T cells of rheumatoid arthritis patients before and after methotrexate treatment.\"\n", " )\n", " \n", " # 6. If the linked data is usable, save it as a CSV file\n", " if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data_filtered.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", " else:\n", " print(\"Dataset not usable for analysis. No linked data saved.\")\n", " \n", "except Exception as e:\n", " print(f\"Error processing data: {e}\")\n", " # If there's an error, mark the dataset as not usable\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=False, # Marking as unavailable due to processing error\n", " is_biased=True, \n", " df=pd.DataFrame(),\n", " note=f\"Error during data processing: {e}. Dataset contains only RA patients with constant trait value.\"\n", " )\n", " print(\"Dataset not usable for analysis. No linked data saved.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }