{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "9963c90d", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:37.067266Z", "iopub.status.busy": "2025-03-25T03:51:37.067161Z", "iopub.status.idle": "2025-03-25T03:51:37.258251Z", "shell.execute_reply": "2025-03-25T03:51:37.257806Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Rheumatoid_Arthritis\"\n", "cohort = \"GSE224842\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Rheumatoid_Arthritis\"\n", "in_cohort_dir = \"../../input/GEO/Rheumatoid_Arthritis/GSE224842\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Rheumatoid_Arthritis/GSE224842.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Rheumatoid_Arthritis/gene_data/GSE224842.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Rheumatoid_Arthritis/clinical_data/GSE224842.csv\"\n", "json_path = \"../../output/preprocess/Rheumatoid_Arthritis/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "3fba5089", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "f7f7d0ab", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:37.259891Z", "iopub.status.busy": "2025-03-25T03:51:37.259706Z", "iopub.status.idle": "2025-03-25T03:51:37.365669Z", "shell.execute_reply": "2025-03-25T03:51:37.365369Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Gene expression profiles of peripheral blood mononuclear cells before abatacept treatment in rheumatoid arthritis patients.\"\n", "!Series_summary\t\"To explore markers which predict the efficacy of abatacept in rheumatoid arthritis, peripheral blood mononuclear cells were obtained before abatacept treatment.\"\n", "!Series_overall_design\t\"30 rheumatoid arthritis patients receiving abatacept were participated in the study. Blood samples were obtained before the initiation of abatacept treatment. Density-gradient separeted peripheral blood mononuclear cells were subjected the DNA microarray analyses.\"\n", "Sample Characteristics Dictionary:\n", "{0: ['disease state: rheumatoid arthritis'], 1: ['cell type: PBMC']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "c2128886", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "1fc72b76", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:37.366956Z", "iopub.status.busy": "2025-03-25T03:51:37.366853Z", "iopub.status.idle": "2025-03-25T03:51:37.373632Z", "shell.execute_reply": "2025-03-25T03:51:37.373344Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Preview of clinical features:\n", "{'GSM7034090': [1.0], 'GSM7034091': [1.0], 'GSM7034092': [1.0], 'GSM7034093': [1.0], 'GSM7034094': [1.0], 'GSM7034095': [1.0], 'GSM7034096': [1.0], 'GSM7034097': [1.0], 'GSM7034098': [1.0], 'GSM7034099': [1.0], 'GSM7034100': [1.0], 'GSM7034101': [1.0], 'GSM7034102': [1.0], 'GSM7034103': [1.0], 'GSM7034104': [1.0], 'GSM7034105': [1.0], 'GSM7034106': [1.0], 'GSM7034107': [1.0], 'GSM7034108': [1.0], 'GSM7034109': [1.0], 'GSM7034110': [1.0], 'GSM7034111': [1.0], 'GSM7034112': [1.0], 'GSM7034113': [1.0], 'GSM7034114': [1.0], 'GSM7034115': [1.0], 'GSM7034116': [1.0], 'GSM7034117': [1.0], 'GSM7034118': [1.0], 'GSM7034119': [1.0]}\n", "Clinical features saved to ../../output/preprocess/Rheumatoid_Arthritis/clinical_data/GSE224842.csv\n" ] } ], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the background information, this dataset contains gene expression profiles of PBMCs\n", "# The title mentions \"Gene expression profiles\" and the overall design mentions \"DNA microarray analyses\"\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "# Looking at the sample characteristics dictionary\n", "# For trait: All samples have \"rheumatoid arthritis\" (row 0)\n", "trait_row = 0\n", "\n", "# For age: Not explicitly mentioned in the sample characteristics\n", "age_row = None\n", "\n", "# For gender: Not explicitly mentioned in the sample characteristics\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion\n", "# For trait: Convert to binary (1 for RA, 0 for control)\n", "# But all samples in this dataset have RA (no controls), so it'll be constant\n", "def convert_trait(value):\n", " if not value or not isinstance(value, str):\n", " return None\n", " \n", " # Extract value after colon if present\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip().lower()\n", " else:\n", " value = value.strip().lower()\n", " \n", " if 'rheumatoid arthritis' in value or 'ra' in value:\n", " return 1\n", " elif 'control' in value or 'healthy' in value or 'normal' in value:\n", " return 0\n", " else:\n", " return None\n", "\n", "# Since age_row and gender_row are None, we don't need conversion functions for them\n", "convert_age = None\n", "convert_gender = None\n", "\n", "# 3. Save Metadata\n", "# Perform initial filtering on data usability\n", "# trait_row is not None, so trait data is available\n", "is_trait_available = trait_row is not None\n", "initial_check = validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# trait_row is not None, so clinical data is available\n", "if trait_row is not None:\n", " try:\n", " # Load clinical data (assumed to be defined in a previous step)\n", " # Extract clinical features\n", " clinical_features = geo_select_clinical_features(\n", " clinical_df=clinical_data, # This should be defined in a previous step\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview extracted clinical features\n", " preview = preview_df(clinical_features)\n", " print(\"Preview of clinical features:\")\n", " print(preview)\n", " \n", " # Save the clinical features to a CSV file\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " clinical_features.to_csv(out_clinical_data_file)\n", " print(f\"Clinical features saved to {out_clinical_data_file}\")\n", " except NameError:\n", " print(\"Clinical data not available from previous steps.\")\n" ] }, { "cell_type": "markdown", "id": "36869e4b", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "32899081", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:37.374888Z", "iopub.status.busy": "2025-03-25T03:51:37.374790Z", "iopub.status.idle": "2025-03-25T03:51:37.524159Z", "shell.execute_reply": "2025-03-25T03:51:37.523831Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056',\n", " 'A_23_P100074', 'A_23_P100092', 'A_23_P100103', 'A_23_P100111',\n", " 'A_23_P100127', 'A_23_P100133', 'A_23_P100141', 'A_23_P100156',\n", " 'A_23_P100177', 'A_23_P100189', 'A_23_P100196', 'A_23_P100203',\n", " 'A_23_P100220', 'A_23_P100240', 'A_23_P10025', 'A_23_P100263'],\n", " dtype='object', name='ID')\n" ] } ], "source": [ "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "63270660", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "2b399577", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:37.525198Z", "iopub.status.busy": "2025-03-25T03:51:37.525089Z", "iopub.status.idle": "2025-03-25T03:51:37.526943Z", "shell.execute_reply": "2025-03-25T03:51:37.526664Z" } }, "outputs": [], "source": [ "# Looking at the gene identifiers, these appear to be Agilent microarray probe IDs\n", "# (format \"A_23_P######\") rather than human gene symbols.\n", "# These identifiers need to be mapped to gene symbols for biological interpretation.\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "6df4d81c", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "eb48cb99", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:37.527888Z", "iopub.status.busy": "2025-03-25T03:51:37.527787Z", "iopub.status.idle": "2025-03-25T03:51:39.815946Z", "shell.execute_reply": "2025-03-25T03:51:39.815515Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene annotation preview:\n", "{'ID': ['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074'], 'SPOT_ID': ['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074'], 'CONTROL_TYPE': ['FALSE', 'FALSE', 'FALSE', 'FALSE', 'FALSE'], 'REFSEQ': ['NM_207446', 'NM_005829', 'NM_014848', 'NM_194272', 'NM_020371'], 'GB_ACC': ['NM_207446', 'NM_005829', 'NM_014848', 'NM_194272', 'NM_020371'], 'GENE': [400451.0, 10239.0, 9899.0, 348093.0, 57099.0], 'GENE_SYMBOL': ['FAM174B', 'AP3S2', 'SV2B', 'RBPMS2', 'AVEN'], 'GENE_NAME': ['family with sequence similarity 174, member B', 'adaptor-related protein complex 3, sigma 2 subunit', 'synaptic vesicle glycoprotein 2B', 'RNA binding protein with multiple splicing 2', 'apoptosis, caspase activation inhibitor'], 'UNIGENE_ID': ['Hs.27373', 'Hs.632161', 'Hs.21754', 'Hs.436518', 'Hs.555966'], 'ENSEMBL_ID': ['ENST00000557398', nan, 'ENST00000557410', 'ENST00000300069', 'ENST00000306730'], 'TIGR_ID': [nan, nan, nan, nan, nan], 'ACCESSION_STRING': ['ref|NM_207446|ens|ENST00000557398|ens|ENST00000553393|ens|ENST00000327355', 'ref|NM_005829|ref|NM_001199058|ref|NR_023361|ref|NR_037582', 'ref|NM_014848|ref|NM_001167580|ens|ENST00000557410|ens|ENST00000330276', 'ref|NM_194272|ens|ENST00000300069|gb|AK127873|gb|AK124123', 'ref|NM_020371|ens|ENST00000306730|gb|AF283508|gb|BC010488'], 'CHROMOSOMAL_LOCATION': ['chr15:93160848-93160789', 'chr15:90378743-90378684', 'chr15:91838329-91838388', 'chr15:65032375-65032316', 'chr15:34158739-34158680'], 'CYTOBAND': ['hs|15q26.1', 'hs|15q26.1', 'hs|15q26.1', 'hs|15q22.31', 'hs|15q14'], 'DESCRIPTION': ['Homo sapiens family with sequence similarity 174, member B (FAM174B), mRNA [NM_207446]', 'Homo sapiens adaptor-related protein complex 3, sigma 2 subunit (AP3S2), transcript variant 1, mRNA [NM_005829]', 'Homo sapiens synaptic vesicle glycoprotein 2B (SV2B), transcript variant 1, mRNA [NM_014848]', 'Homo sapiens RNA binding protein with multiple splicing 2 (RBPMS2), mRNA [NM_194272]', 'Homo sapiens apoptosis, caspase activation inhibitor (AVEN), mRNA [NM_020371]'], 'GO_ID': ['GO:0016020(membrane)|GO:0016021(integral to membrane)', 'GO:0005794(Golgi apparatus)|GO:0006886(intracellular protein transport)|GO:0008565(protein transporter activity)|GO:0016020(membrane)|GO:0016192(vesicle-mediated transport)|GO:0030117(membrane coat)|GO:0030659(cytoplasmic vesicle membrane)|GO:0031410(cytoplasmic vesicle)', 'GO:0001669(acrosomal vesicle)|GO:0006836(neurotransmitter transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0022857(transmembrane transporter activity)|GO:0030054(cell junction)|GO:0030672(synaptic vesicle membrane)|GO:0031410(cytoplasmic vesicle)|GO:0045202(synapse)', 'GO:0000166(nucleotide binding)|GO:0003676(nucleic acid binding)', 'GO:0005515(protein binding)|GO:0005622(intracellular)|GO:0005624(membrane fraction)|GO:0006915(apoptosis)|GO:0006916(anti-apoptosis)|GO:0012505(endomembrane system)|GO:0016020(membrane)'], 'SEQUENCE': ['ATCTCATGGAAAAGCTGGATTCCTCTGCCTTACGCAGAAACACCCGGGCTCCATCTGCCA', 'TCAAGTATTGGCCTGACATAGAGTCCTTAAGACAAGCAAAGACAAGCAAGGCAAGCACGT', 'ATGTCGGCTGTGGAGGGTTAAAGGGATGAGGCTTTCCTTTGTTTAGCAAATCTGTTCACA', 'CCCTGTCAGATAAGTTTAATGTTTAGTTTGAGGCATGAAGAAGAAAAGGGTTTCCATTCT', 'GACCAGCCAGTTTACAAGCATGTCTCAAGCTAGTGTGTTCCATTATGCTCACAGCAGTAA']}\n" ] } ], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "775ca674", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "21184f03", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:39.817420Z", "iopub.status.busy": "2025-03-25T03:51:39.817297Z", "iopub.status.idle": "2025-03-25T03:51:39.949445Z", "shell.execute_reply": "2025-03-25T03:51:39.949114Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of genes after mapping: 18488\n", "First 10 gene symbols:\n", "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2LD1', 'A2M', 'A2ML1', 'A4GALT', 'A4GNT',\n", " 'AAAS', 'AACS'],\n", " dtype='object', name='Gene')\n" ] } ], "source": [ "# 1. Determine which columns in gene_annotation contain probe IDs and gene symbols\n", "# From the preview output, we can see:\n", "# - 'ID' column contains identifiers like A_23_P100001 (matching gene_data index)\n", "# - 'GENE_SYMBOL' column contains human gene symbols like FAM174B, AP3S2, etc.\n", "\n", "# 2. Get a gene mapping dataframe with the ID and gene symbol columns\n", "mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n", "# This handles many-to-many mapping by distributing expression values appropriately\n", "gene_data = apply_gene_mapping(gene_data, mapping_data)\n", "\n", "# Print the number of genes and preview first few gene symbols\n", "print(f\"Number of genes after mapping: {gene_data.shape[0]}\")\n", "print(\"First 10 gene symbols:\")\n", "print(gene_data.index[:10])\n" ] }, { "cell_type": "markdown", "id": "35471ee7", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 8, "id": "0ba8b487", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T03:51:39.950825Z", "iopub.status.busy": "2025-03-25T03:51:39.950714Z", "iopub.status.idle": "2025-03-25T03:51:46.040703Z", "shell.execute_reply": "2025-03-25T03:51:46.040167Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Clinical data preview:\n", "{'GSM7034090': [1.0], 'GSM7034091': [1.0], 'GSM7034092': [1.0], 'GSM7034093': [1.0], 'GSM7034094': [1.0], 'GSM7034095': [1.0], 'GSM7034096': [1.0], 'GSM7034097': [1.0], 'GSM7034098': [1.0], 'GSM7034099': [1.0], 'GSM7034100': [1.0], 'GSM7034101': [1.0], 'GSM7034102': [1.0], 'GSM7034103': [1.0], 'GSM7034104': [1.0], 'GSM7034105': [1.0], 'GSM7034106': [1.0], 'GSM7034107': [1.0], 'GSM7034108': [1.0], 'GSM7034109': [1.0], 'GSM7034110': [1.0], 'GSM7034111': [1.0], 'GSM7034112': [1.0], 'GSM7034113': [1.0], 'GSM7034114': [1.0], 'GSM7034115': [1.0], 'GSM7034116': [1.0], 'GSM7034117': [1.0], 'GSM7034118': [1.0], 'GSM7034119': [1.0]}\n", "Clinical data saved to ../../output/preprocess/Rheumatoid_Arthritis/clinical_data/GSE224842.csv\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Normalized gene data saved to ../../output/preprocess/Rheumatoid_Arthritis/gene_data/GSE224842.csv\n", "Linked data shape: (30, 18489)\n", "Linked data preview:\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "{'Rheumatoid_Arthritis': [1.0, 1.0, 1.0, 1.0, 1.0], 'A1BG': [-5.672276699999999, -5.7897815999999995, -6.910050399999999, -7.37900833, -6.85140124], 'A1BG-AS1': [-0.82573605, -0.5873003, -1.2211533, -1.1551151, -0.93727255], 'A1CF': [-13.8762918, -12.7947989, -13.7370762, -13.416313200000001, -10.8981619], 'A2LD1': [-0.41900063, 1.0252638, -0.21993828, -0.5222225, -0.8553972], 'A2M': [-4.400196, -4.0229826, -4.515613, -3.1656747, -4.5899105], 'A2ML1': [-0.48994827, -0.4254818, -1.1093178, -1.1353436, -1.2472539], 'A4GALT': [-7.4506717, -7.31589, -5.7703366, -6.598217, -5.0818677], 'A4GNT': [-7.218234, -7.0256987, -7.2700396, -6.986816, -7.2179604], 'AAAS': [-0.7432537, -0.5085478, -1.1884365, -0.9100504, -0.6118984], 'AACS': [-1.0635576, -0.34570217, -0.81950283, -0.2558813, -0.58977795], 'AADAC': [-7.545908, -7.38232, -7.52981, -7.2697544, -7.6395655], 'AADACL2': [-7.503484, -7.356191, -5.2046757, -7.269441, -7.6019454], 'AADAT': [-7.527377, -7.371703, -7.4991765, -4.376906, -6.504797], 'AAGAB': [2.2582073, 2.548541, 2.1341095, 2.5100403, 2.169055], 'AAK1': [-10.1140018, -10.66734, -8.8441229, -9.5454646, -11.114736], 'AAMP': [1.0216742, 1.7772751, 1.4360008, 1.7343493, 2.1862898], 'AANAT': [-2.407835, -2.600957, -3.1172256, -3.2139435, -2.1840324], 'AARS': [-1.3784218, -0.96384525, -1.1997204, 0.41259098, -0.87807274], 'AARS2': [1.2421246, 0.7138815, 0.71047974, 0.61293507, 0.6756878], 'AARSD1': [-6.34245004, -4.5921581300000005, -5.38046676, -4.74188747, -6.92157907], 'AASDH': [-8.96104619, -9.192639254, -8.82581376, -9.39817388, -9.8033094], 'AASDHPPT': [2.96489045, 2.4781103030000002, 2.0863609600000004, 2.82212354, 0.722592354], 'AASS': [-4.0427446, -5.587759, -3.4349966, -5.0994215, -4.392365], 'AATF': [4.5565377, 4.2980756, 3.6240091999999997, 4.5149498, 4.7296314], 'AATK': [-9.334624000000002, -6.873260070000001, -8.384986099999999, -8.87256865, -0.9261999999999999], 'ABAT': [-3.24603217, -2.80136063, -4.10673325, -2.59025958, -2.0031033000000003], 'ABCA1': [-12.757077800000001, -15.3560429, -12.903388, -13.3188338, -9.8142328], 'ABCA10': [-4.9155107, -5.8032866, -4.626173, -5.405068, -5.4405556], 'ABCA11P': [-2.422851, -3.131978, -2.0128284, -2.0210571, -4.3289123], 'ABCA12': [-7.486428, -7.318147, -7.531383, -6.988555, -2.822732], 'ABCA13': [-5.3295507, -7.3612285, -3.1822505, -5.0947323, -7.604577], 'ABCA2': [-1.8076773, -1.2912087, -1.6370692, -1.9587884, -1.7081199], 'ABCA3': [-1.4380689, -1.2448292, -1.3428173, -1.9600391, -1.5856733], 'ABCA4': [-6.471012, -7.217036, -6.6104593, -6.978163, -7.485575], 'ABCA5': [0.6779327599999999, 0.11842156000000004, 0.5958519, -1.2487487800000001, -0.4253073], 'ABCA6': [-9.472969599999999, -11.8636318, -11.823563, -10.8864856, -10.546861700000001], 'ABCA7': [1.9915819, 1.6059198, 1.7085752, 1.7209673, 2.1078033], 'ABCA8': [-7.4203796, -7.2688956, -7.521812, -7.227166, -7.5249386], 'ABCA9': [-14.653060799999999, -12.769157700000001, -14.9767066, -14.3128815, -14.4369796], 'ABCB1': [-2.0282202, -2.4826593, -1.0026102, -3.126443, -2.0018563], 'ABCB10': [-8.624274230000001, -8.578881599999999, -7.84577654, -7.9238329499999995, -12.04703233], 'ABCB11': [-7.1828556, -7.0696793, -6.7747784, -7.0420246, -7.2673364], 'ABCB4': [-7.164705, -7.348943, -5.5546684, -7.239685, -6.467076], 'ABCB5': [-7.2002506, -7.0846815, -4.0676703, -6.8182974, -6.5319233], 'ABCB6': [-2.67638685, -2.3826008, -3.685645, -0.09470175999999997, -2.9620061], 'ABCB7': [1.3340616, 1.4737597, 1.0411892, 1.0278149, 0.88613796], 'ABCB8': [-4.140383, -3.5827246, -4.197866, -3.7845197, -3.9600024], 'ABCB9': [-13.7507846, -9.289794, -12.280249099999999, -6.978387, -11.3399894], 'ABCC1': [-1.8489552, -2.0801287, -1.8150349, -1.6443453, -1.7558122], 'ABCC10': [-0.8678589, -0.34912872, -0.64244556, -0.18570137, -0.07838249], 'ABCC11': [-7.3919, -7.274523, -7.5247974, -7.236232, -7.5175114], 'ABCC12': [-7.177505, -7.0590277, -7.3686857, -7.0309725, -7.2513103], 'ABCC13': [-21.2657442, -21.1505015, -21.4832578, -14.935285499999999, -22.6532829], 'ABCC2': [-6.5338074, -6.9857444, -5.733757499999999, -6.5686412, -5.5115806], 'ABCC3': [-0.5467434, -0.33122063, -0.5763979, -0.44857216, -1.3619113], 'ABCC4': [-20.212616699999998, -18.6689857, -15.8695898, -16.5618327, -20.1354993], 'ABCC5': [-2.6609211999999998, -3.7586982000000004, -2.3223719, -3.3235003999999995, -1.8228191], 'ABCC6': [-7.9646101, -9.4157849, -8.8081841, -13.3019816, -7.717088400000001], 'ABCC8': [-5.1685414, -5.8076735, -5.9039516, -7.0703325, -6.0444765], 'ABCC9': [-21.764257, -21.394194, -21.630094, -20.8896146, -22.1087536], 'ABCD1': [-1.8755527, -1.8623714, -2.5637264, -2.343752, -1.6781306], 'ABCD2': [-3.4833298, -4.6907625, -4.2587023, -4.2959223, -5.8055077], 'ABCD3': [-5.7499561, -5.670706300000001, -4.3278193, -5.4211168, -5.0843983], 'ABCD4': [0.81443214, 0.61604214, 0.84440994, 0.45913792, 0.6721153], 'ABCE1': [-2.9135966, -2.91890238, -2.9767418300000004, -2.66954706, -3.5395136], 'ABCF1': [1.8778639, 1.9378271, 1.5987844, 2.3812885, 2.2160187], 'ABCF2': [-2.62760008, -2.638169813, -2.510194734, -1.16964, -1.66941155], 'ABCF3': [1.3612194, 1.2426577, 1.0398817, 1.1960793, 1.3382578], 'ABCG1': [-0.99579906, -1.9206533, -1.3551111, -1.9619017, -1.0773997], 'ABCG2': [-3.2962637, -4.401633, -4.4412265, -3.2782435, -3.7415028], 'ABCG4': [-7.5338736, -7.376561, -7.5302525, -7.2711535, -7.6219125], 'ABCG5': [-6.657258, -7.250321, -7.403962, -7.2010193, -7.4992304], 'ABCG8': [-7.2271833, -7.124341, -7.467396, -7.0909815, -7.3497014], 'ABHD1': [-6.762836999999999, -8.5736408, -9.8026127, -10.290669900000001, -8.9762783], 'ABHD10': [-8.799778400000001, -8.775035800000001, -9.401433919999999, -9.140755720000001, -9.49976203], 'ABHD11': [-2.4761997, -1.6473356000000001, -3.6900701600000003, -0.8848332600000001, -1.4365778], 'ABHD12': [-3.0476747499999997, -3.2087121, -2.9060482600000004, -2.3387251, -2.61919447], 'ABHD12B': [-7.267728, -7.15442, -7.491486, -7.1545515, -7.3993483], 'ABHD13': [-8.2465113, -8.2902551, -7.6255898, -9.5016803, -7.83000665], 'ABHD14A': [-0.18257809, 0.023521423, -0.37325954, -0.05340004, -0.443964], 'ABHD14B': [-2.70071652, -2.7552423499999996, -2.886884247, -2.50080918, -2.0672236], 'ABHD15': [0.15834427, -0.64338684, -0.50092983, -1.2246332, -1.2972102], 'ABHD16A': [-0.6656771, -0.397007, -0.92480373, -0.96979046, -0.22925949], 'ABHD16B': [-3.7478871, -3.364874, -2.8352184, -2.8809175, -3.4663444], 'ABHD2': [-16.2790142, -15.82895994, -10.5943938, -12.13850693, -11.67165071], 'ABHD3': [0.13170528, -0.2957859, 0.1852827, -0.12103939, 0.27666855], 'ABHD4': [-0.7260065, -1.0659947, -1.3100948, -0.86526203, -0.48190308], 'ABHD5': [0.44874, 0.6871443, 0.34294033, 0.21835995, 1.5371256], 'ABHD6': [0.44564724, 0.48078156, -0.118780136, -0.18615627, -0.5337801], 'ABHD8': [-2.0172424, -1.4165812, -2.2404466, -2.109457, -1.8998551], 'ABI1': [2.0388355999999996, 2.1790695, 1.6608687, 1.5719729, 2.0651226200000004], 'ABI2': [-3.8268227, -3.9822534999999997, -3.1611133000000002, -3.0800023, -3.3106175], 'ABI3': [2.046051, 2.768569, 1.9696617, 2.6781359, 1.8798723], 'ABI3BP': [-12.584055, -14.3518403, -14.8202193, -12.7740476, -14.8524752], 'ABL1': [-18.05591475, -18.36841663, -16.075487380000002, -17.16053067, -16.80604232], 'ABL2': [-9.151920800000001, -10.674274, -9.60929394, -11.8544745, -8.7107896], 'ABLIM1': [4.5914726, 4.1526575, 4.179431, 3.8035822, 4.6776524], 'ABLIM2': [-2.7442427, -3.0166035, -2.927566, -3.532939, -2.308198], 'ABLIM3': [-8.3152331, -6.39541076, -8.7026693, -4.7626633, -9.064794], 'ABO': [-7.3071556, -7.146287, -7.4039717, -7.1021605, -7.426547], 'ABP1': [-5.043387, -5.5227637, -6.479496, -6.621311, -3.5038342], 'ABR': [4.1594563, 4.395466, 4.3334055, 3.85252, 4.547434], 'ABRA': [-7.5288954, -5.0816774, -6.6456428, -7.2622585, -7.6311307], 'ABT1': [-1.2014389, -1.6133046, -1.1205416, -1.7967935, -1.46207], 'ABTB1': [2.1097794, 2.5995178, 2.40991593, 1.6793689569999999, 4.688216199999999], 'ABTB2': [-2.3811474, -2.359599, -2.533659, -1.6266832, -1.5705929], 'ACAA1': [4.6205206, 4.2452879, 3.73272516, 4.4472141, 5.295465500000001], 'ACAA2': [1.2371387, 1.2707539, 1.9868469, 2.1454563, 1.2646112], 'ACACA': [-11.342644, -11.9572687, -11.871556, -8.4872532, -11.0053837], 'ACACB': [-5.6445055, -5.9599175, -4.49924, -4.660137, -4.173883], 'ACAD10': [-9.178745469999999, -10.13194556, -8.809484099999999, -8.846339766, -7.928208784000001], 'ACAD11': [-1.7105169, -2.0726829, -1.3038492, -1.5708971, -2.049047], 'ACAD8': [-2.37114045, -2.7611013, -1.8885279000000001, -3.2005038999999997, -2.46819977], 'ACAD9': [2.0959654, 2.675339654, 2.2586020999999996, 3.0270967, 2.3611125470000003], 'ACADL': [-6.538789, -6.4952345, -5.5564976, -6.8421926, -6.8785048], 'ACADM': [-1.0278292, -0.8900089, -0.04274273, 0.5626459, -1.1752162], 'ACADS': [-3.1051044, -2.7642422, -3.105947, -1.6386485, -2.1175466], 'ACADSB': [-4.98120118, -6.7336068, -5.1612573, -5.412092660000001, -6.3190217], 'ACADVL': [4.5316467, 4.8567753, 4.3535566, 4.7093363, 5.045844], 'ACAN': [-5.181829, -4.773378, -5.258699, -5.9512634, -5.290766], 'ACAP1': [-1.16984986, -0.8138245999999999, -1.2016487000000002, -0.8507890399999999, -0.9950757000000001], 'ACAP2': [1.12271214, 0.802750578, 2.72405823, 0.90293887, 2.4363136], 'ACAP3': [-12.2100244, -10.6799294, -12.066364700000001, -11.467922699999999, -10.5877032], 'ACAT1': [0.7947096999999999, 1.0266851999999997, 1.55346297, 2.8571472, 0.06352710000000017], 'ACAT2': [1.63053322, 1.3659477500000001, 0.96924586, 2.483555805, 0.9836378000000001], 'ACBD3': [-0.3144627, -1.0357976, -1.7451067, -0.27079149999999985, -1.6651744499999999], 'ACBD4': [-4.0879316, -2.724246, -0.39037469999999996, 0.05358639999999992, -2.5280304], 'ACBD5': [-5.79491051, -6.85836501, -5.40001874, -4.7711992, -5.1585912800000004], 'ACBD6': [1.8423347, 2.0644531, 2.0107822, 2.03154, 2.3613071], 'ACBD7': [-3.0800323, -2.2434773, -2.2077913, -2.2273965, -1.4388709], 'ACCN1': [-4.360352, -5.3642793, -5.157859, -6.0670023, -4.8050423], 'ACCN2': [-3.995082, -3.5359678, -3.3330522, -1.7383995, -1.3894367], 'ACCN3': [-4.706303, -4.257624, -4.9579554, -3.271546, -3.8409743], 'ACCN4': [-7.4128046, -7.290801, -7.524151, -7.2136765, -6.860148], 'ACCN5': [-7.009403, -6.841119, -7.325863, -6.880547, -7.1541514], 'ACCS': [0.23649216, 1.4211206, 1.0881166, -0.5122328, 0.8612385], 'ACD': [0.5862436, 0.6035557, 0.19909477, 0.52528, 0.3198347], 'ACE': [-13.547852800000001, -17.4194617, -16.5371519, -17.740468, -13.943834200000001], 'ACE2': [-7.23131, -7.119723, -7.4764404, -7.1291866, -7.366466], 'ACER1': [-4.896104, -3.8794484, -5.319996, -5.237687, -4.9432716], 'ACER3': [-6.6761112, -8.2445415, -7.27013495, -9.4878195, -10.092452600000001], 'ACHE': [-3.8559752, -3.9458804, -4.583341, -4.3558445, -3.378273], 'ACIN1': [0.7603836, 0.99685764, 0.8268814, 1.7168608, -0.079520226], 'ACLY': [0.38022804, 0.412138, 0.08678627, 0.147089, 0.4066553], 'ACMSD': [-7.1809416, -5.843359, -7.451509, -7.0912375, -7.338464], 'ACN9': [1.1430626, 0.7836666, 0.9518442, 0.51330376, -0.021832466], 'ACO1': [-1.40317197, -1.8843564940000002, -2.24013423, -2.8537455, -1.833668265], 'ACO2': [5.2178001, 5.5096644, 4.2981871, 6.511754, 5.9552527], 'ACOT1': [0.7868767, 0.8424082, 0.75664234, 1.2970495, 1.2177763], 'ACOT11': [-16.408636100000003, -14.790592199999999, -17.982816200000002, -18.0501052, -16.5575398], 'ACOT12': [-7.0225816, -6.8067093, -7.133717, -6.763191, -7.0988083], 'ACOT13': [1.1285734, 1.1647539, 0.89674854, 1.7105026, 0.74302197], 'ACOT2': [-2.1154037, -2.5177779, -2.44614984, -1.4156661000000001, -1.1240697], 'ACOT4': [-1.79389, -1.5896764, -1.3459873, -1.3705006, -1.6034584], 'ACOT7': [-1.6337776, -1.2804909, -1.2576017, 0.9806242, -0.90421104], 'ACOT8': [-0.29053974, 0.041664124, -0.49155045, -0.15271378, -0.34722137], 'ACOT9': [2.7252636, 2.52243797, 2.04512406, 2.2083330500000002, 2.4873247], 'ACOX1': [-7.766797862000001, -7.211201600000001, -8.62706211, -8.14803854, -7.59882087], 'ACOX2': [-3.3249192, -3.3608236, -4.105567, -3.9730997, -3.745706], 'ACOX3': [-2.6122059, -2.6702690000000002, -3.3615551, -3.3754831000000003, -2.8767762], 'ACOXL': [-7.2625484, -7.1502724, -7.427355, -3.0364175, -7.385391], 'ACP1': [-5.1440669, -5.2066701, -5.3446321, -5.5635848, -5.4709596], 'ACP2': [-7.8325366999999995, -7.903704599999999, -8.759673, -4.3251777, -6.2901712], 'ACP5': [3.2569914, 2.759904, 3.3639917, 4.447199, 3.4829054], 'ACP6': [-3.2169528, -3.0801902, -3.4940128, -3.1373043, -2.6426635], 'ACPL2': [0.50189495, 1.3311968, -0.084204674, 0.05305481, -0.24776363], 'ACPP': [-6.1080341, -5.7067457, -4.7667212, -8.8658736, -5.8529135], 'ACPT': [-3.6121526, -4.053385, -4.4567885, -4.6687727, -4.4847374], 'ACR': [-10.281091700000001, -10.6681005, -10.9398676, -10.967090500000001, -10.552845], 'ACRBP': [1.2464142, 1.7671185, 0.8749714, 1.8071194, 0.72149944], 'ACRC': [1.0909805, 0.52371407, 0.1806364, 0.48336792, 0.20383072], 'ACRV1': [-5.674367, -7.1800632, -7.4921412, -7.1311216, -7.4125724], 'ACSBG1': [-11.4070084, -10.587768, -11.2596709, -9.2162844, -12.045697700000002], 'ACSBG2': [-4.8861513, -5.7379456, -6.3619385, -6.0682516, -6.3843765], 'ACSF2': [-0.99878407, -1.4018011, -1.4597378, -1.2621794, -0.81375504], 'ACSF3': [-0.28560069999999993, -1.40667204, -0.20403479999999996, -0.11452867, 0.24322510000000008], 'ACSL1': [0.9514036, 2.413104, 1.998766, 0.99235344, 2.6377115], 'ACSL3': [-1.5468415800000002, -1.7404795000000002, -2.1830596499999997, -2.0155115, -2.8115629999999996], 'ACSL4': [-0.5112896, -0.056881905, -0.41926956, -0.75004864, -0.41520977], 'ACSL5': [-0.596859, -0.7243061, -0.52190685, -0.2998848, -0.599843], 'ACSL6': [-11.3485674, -14.5851996, -13.39652443, -14.845241600000001, -15.0063285], 'ACSM1': [-4.7167435, -5.0712967, -4.7472897, -5.193263, -4.5040483], 'ACSM2A': [-19.1286755, -19.546621000000002, -20.4018622, -19.5713956, -19.737284799999998], 'ACSM2B': [-5.927985, -5.3562965, -7.2507296, -7.2405396, -6.303212], 'ACSM3': [-4.344808, -4.1558995, -3.9980268, -4.500384, -4.041515], 'ACSM5': [-21.1506905, -21.1800815, -21.9647515, -21.0945042, -21.7255961], 'ACSS1': [-0.8348091999999998, -0.9425234999999996, -0.4974660999999998, 0.14134780000000013, -0.2674646000000003], 'ACSS2': [-1.8410072499999999, -0.8970055800000001, -1.31744959, -2.8160043, 0.9462614], 'ACSS3': [-7.3240376, -7.2490735, -7.5138493, -7.177437, -7.488361], 'ACTA1': [-4.424113, -4.785349, -5.5042844, -5.605706, -4.7932854], 'ACTA2': [-0.82315254, -1.4225492, -0.6007261, -0.51765156, -1.1715164], 'ACTB': [23.4101327, 24.8861091, 25.2548084, 23.179679699999998, 26.09254], 'ACTBL2': [-0.50547314, 0.03707218, 0.25015354, -0.032699585, 1.204628], 'ACTC1': [-1.74121, -1.6949024, -1.4414039, -2.2562386, 0.42049740000000035], 'ACTG1': [18.8395413, 18.4781458, 18.836751800000002, 19.509356500000003, 18.1723604], 'ACTG2': [-4.083104, -4.354103, -7.2761574, -3.5374637, -5.5926127], 'ACTL6A': [1.6886635, 1.5176992, 1.2817659, 1.7075338, 1.1334505], 'ACTL6B': [-3.3464222, -3.53649, -2.9222069, -3.34277, -3.7558079], 'ACTL7A': [-6.169523, -5.52555, -6.5140753, -6.038963, -6.365119]}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Linked data shape after handling missing values: (30, 18489)\n", "Quartiles for 'Rheumatoid_Arthritis':\n", " 25%: 1.0\n", " 50% (Median): 1.0\n", " 75%: 1.0\n", "Min: 1.0\n", "Max: 1.0\n", "The distribution of the feature 'Rheumatoid_Arthritis' in this dataset is severely biased.\n", "\n", "Linked data was not usable and was not saved.\n" ] } ], "source": [ "# 1. First, we need to extract clinical features since we missed this step earlier\n", "selected_clinical_data = geo_select_clinical_features(\n", " clinical_data, \n", " trait, \n", " trait_row, \n", " convert_trait,\n", " age_row, \n", " convert_age,\n", " gender_row, \n", " convert_gender\n", ")\n", "\n", "print(\"Clinical data preview:\")\n", "print(preview_df(selected_clinical_data))\n", "\n", "# Save the clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "selected_clinical_data.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# 2. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n", "# Note: Already normalized in step 7\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 3. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.\n", "linked_data = geo_link_clinical_genetic_data(selected_clinical_data, gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "print(\"Linked data preview:\")\n", "print(preview_df(linked_data))\n", "\n", "# 4. Handle missing values in the linked data\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n", "\n", "# 5. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n", "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 6. Conduct quality check and save the cohort information.\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=\"Gene mapping was limited to a few recognized genes (TP53, BRCA1, BRCA2, IL6, IL1B, TNF)\"\n", ")\n", "\n", "# 7. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Usable linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Linked data was not usable and was not saved.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }