{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "d66a6f7d", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:32:21.930922Z", "iopub.status.busy": "2025-03-25T08:32:21.930437Z", "iopub.status.idle": "2025-03-25T08:32:22.100818Z", "shell.execute_reply": "2025-03-25T08:32:22.100463Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Crohns_Disease\"\n", "cohort = \"GSE169568\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Crohns_Disease\"\n", "in_cohort_dir = \"../../input/GEO/Crohns_Disease/GSE169568\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Crohns_Disease/GSE169568.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Crohns_Disease/gene_data/GSE169568.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Crohns_Disease/clinical_data/GSE169568.csv\"\n", "json_path = \"../../output/preprocess/Crohns_Disease/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "80cee7d9", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "bd213c76", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:32:22.102315Z", "iopub.status.busy": "2025-03-25T08:32:22.102163Z", "iopub.status.idle": "2025-03-25T08:32:22.313769Z", "shell.execute_reply": "2025-03-25T08:32:22.313438Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"BeadChip microarray data of peripheral blood obtained from treatment-näive IBD patients and control individuals\"\n", "!Series_summary\t\"Comperhensive analysis of blood transcriptomes obtained from treatment-näive IBD patients.\"\n", "!Series_overall_design\t\"Total RNA extracted from peripheral blood samples (n = 205) was reverse transcribed and biotin-labeled using the TargetAmp-Nano Labeling Kit for Illumina Expression BeadChip (Epicentre) according to the manufacturer’s protocol. The labeled antisense RNA was hybridized to Human HT-12 v4 BeadChip array (Illumina) following the standard producer’s hybridization protocol. The array imaging was performed on an iScan system (Illumina) according to the standard manufacturer’s protocol.\"\n", "Sample Characteristics Dictionary:\n", "{0: ['Sex: female', 'Sex: male'], 1: ['age: 20', 'age: 39', 'age: 56', 'age: 31', 'age: 22', 'age: 32', 'age: 30', 'age: 18', 'age: 60', 'age: 33', 'age: 27', 'age: 34', 'age: 57', 'age: 72', 'age: 35', 'age: 24', 'age: 21', 'age: 62', 'age: 41', 'age: 29', 'age: 46', 'age: 49', 'age: 76', 'age: 23', 'age: 37', 'age: 64', 'age: 26', 'age: 19', 'age: 17', 'age: 48'], 2: ['diagnosis: Symptomatic control', 'diagnosis: Ulcerative colitis', \"diagnosis: Crohn's disease\", 'diagnosis: Healthy control'], 3: ['annotation file: HumanHT-12_V4_0_R2_15002873_B.bgx']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "213435cf", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "75f34f93", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:32:22.315062Z", "iopub.status.busy": "2025-03-25T08:32:22.314936Z", "iopub.status.idle": "2025-03-25T08:32:22.338382Z", "shell.execute_reply": "2025-03-25T08:32:22.338069Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Clinical Data Preview:\n", "{'GSM5209429': [0.0, 20.0, 0.0], 'GSM5209430': [0.0, 39.0, 1.0], 'GSM5209431': [0.0, 56.0, 0.0], 'GSM5209432': [0.0, 31.0, 0.0], 'GSM5209433': [1.0, 22.0, 1.0], 'GSM5209434': [0.0, 32.0, 1.0], 'GSM5209435': [0.0, 32.0, 0.0], 'GSM5209436': [0.0, 30.0, 0.0], 'GSM5209437': [0.0, 30.0, 1.0], 'GSM5209438': [0.0, 18.0, 0.0], 'GSM5209439': [0.0, 60.0, 0.0], 'GSM5209440': [0.0, 33.0, 1.0], 'GSM5209441': [0.0, 27.0, 0.0], 'GSM5209442': [0.0, 30.0, 1.0], 'GSM5209443': [0.0, 34.0, 0.0], 'GSM5209444': [0.0, 57.0, 1.0], 'GSM5209445': [0.0, 27.0, 1.0], 'GSM5209446': [0.0, 20.0, 0.0], 'GSM5209447': [0.0, 30.0, 0.0], 'GSM5209448': [1.0, 27.0, 1.0], 'GSM5209449': [0.0, 32.0, 1.0], 'GSM5209450': [0.0, 72.0, 0.0], 'GSM5209451': [1.0, 35.0, 0.0], 'GSM5209452': [0.0, 24.0, 0.0], 'GSM5209453': [1.0, 21.0, 1.0], 'GSM5209454': [0.0, 62.0, 1.0], 'GSM5209455': [1.0, 41.0, 0.0], 'GSM5209456': [0.0, 22.0, 0.0], 'GSM5209457': [0.0, 18.0, 0.0], 'GSM5209458': [0.0, 20.0, 1.0], 'GSM5209459': [1.0, 29.0, 0.0], 'GSM5209460': [0.0, 46.0, 1.0], 'GSM5209461': [0.0, 31.0, 1.0], 'GSM5209462': [0.0, 34.0, 0.0], 'GSM5209463': [0.0, 32.0, 1.0], 'GSM5209464': [0.0, 49.0, 0.0], 'GSM5209465': [1.0, 76.0, 1.0], 'GSM5209466': [1.0, 23.0, 0.0], 'GSM5209467': [0.0, 37.0, 1.0], 'GSM5209468': [0.0, 30.0, 1.0], 'GSM5209469': [0.0, 64.0, 1.0], 'GSM5209470': [0.0, 23.0, 1.0], 'GSM5209471': [0.0, 24.0, 0.0], 'GSM5209472': [0.0, 26.0, 1.0], 'GSM5209473': [1.0, 19.0, 1.0], 'GSM5209474': [0.0, 60.0, 0.0], 'GSM5209475': [1.0, 17.0, 0.0], 'GSM5209476': [1.0, 41.0, 0.0], 'GSM5209477': [1.0, 48.0, 0.0], 'GSM5209478': [0.0, 26.0, 0.0], 'GSM5209479': [0.0, 35.0, 1.0], 'GSM5209480': [0.0, 22.0, 0.0], 'GSM5209481': [0.0, 73.0, 0.0], 'GSM5209482': [1.0, 69.0, 1.0], 'GSM5209483': [0.0, 57.0, 1.0], 'GSM5209484': [0.0, 50.0, 0.0], 'GSM5209485': [0.0, 27.0, 1.0], 'GSM5209486': [0.0, 69.0, 1.0], 'GSM5209487': [0.0, 28.0, 1.0], 'GSM5209488': [0.0, 51.0, 0.0], 'GSM5209489': [0.0, 64.0, 1.0], 'GSM5209490': [0.0, 52.0, 1.0], 'GSM5209491': [0.0, 55.0, 1.0], 'GSM5209492': [0.0, 47.0, 1.0], 'GSM5209493': [0.0, 61.0, 0.0], 'GSM5209494': [0.0, 29.0, 0.0], 'GSM5209495': [0.0, 36.0, 0.0], 'GSM5209496': [0.0, 24.0, 0.0], 'GSM5209497': [0.0, 24.0, 0.0], 'GSM5209498': [0.0, 21.0, 0.0], 'GSM5209499': [0.0, 54.0, 0.0], 'GSM5209500': [0.0, 24.0, 0.0], 'GSM5209501': [0.0, 78.0, 0.0], 'GSM5209502': [0.0, 23.0, 1.0], 'GSM5209503': [0.0, 27.0, 0.0], 'GSM5209504': [0.0, 21.0, 1.0], 'GSM5209505': [0.0, 34.0, 1.0], 'GSM5209506': [0.0, 51.0, 1.0], 'GSM5209507': [1.0, 31.0, 0.0], 'GSM5209508': [1.0, 40.0, 0.0], 'GSM5209509': [1.0, 24.0, 0.0], 'GSM5209510': [1.0, 24.0, 1.0], 'GSM5209511': [0.0, 23.0, 0.0], 'GSM5209512': [0.0, 33.0, 1.0], 'GSM5209513': [0.0, 25.0, 0.0], 'GSM5209514': [0.0, 23.0, 0.0], 'GSM5209515': [0.0, 41.0, 1.0], 'GSM5209516': [0.0, 32.0, 1.0], 'GSM5209517': [1.0, 23.0, 0.0], 'GSM5209518': [0.0, 36.0, 1.0], 'GSM5209519': [1.0, 26.0, 1.0], 'GSM5209520': [1.0, 23.0, 0.0], 'GSM5209521': [1.0, 36.0, 1.0], 'GSM5209522': [1.0, 40.0, 0.0], 'GSM5209523': [1.0, 26.0, 0.0], 'GSM5209524': [1.0, 18.0, 0.0], 'GSM5209525': [0.0, 35.0, 0.0], 'GSM5209526': [0.0, 24.0, 0.0], 'GSM5209527': [0.0, 32.0, 1.0], 'GSM5209528': [0.0, 61.0, 0.0], 'GSM5209529': [0.0, 34.0, 0.0], 'GSM5209530': [0.0, 54.0, 0.0], 'GSM5209531': [1.0, 21.0, 0.0], 'GSM5209532': [0.0, 28.0, 1.0], 'GSM5209533': [1.0, 38.0, 0.0], 'GSM5209534': [1.0, 69.0, 1.0], 'GSM5209535': [0.0, 28.0, 0.0], 'GSM5209536': [0.0, 27.0, 1.0], 'GSM5209537': [0.0, 33.0, 1.0], 'GSM5209538': [0.0, 24.0, 1.0], 'GSM5209539': [0.0, 19.0, 1.0], 'GSM5209540': [1.0, 32.0, 1.0], 'GSM5209541': [0.0, 40.0, 1.0], 'GSM5209542': [0.0, 39.0, 0.0], 'GSM5209543': [1.0, 29.0, 0.0], 'GSM5209544': [1.0, 26.0, 1.0], 'GSM5209545': [1.0, 26.0, 1.0], 'GSM5209546': [0.0, 18.0, 0.0], 'GSM5209547': [0.0, 38.0, 1.0], 'GSM5209548': [0.0, 59.0, 1.0], 'GSM5209549': [1.0, 53.0, 1.0], 'GSM5209550': [0.0, 41.0, 1.0], 'GSM5209551': [1.0, 24.0, 0.0], 'GSM5209552': [1.0, 28.0, 0.0], 'GSM5209553': [1.0, 30.0, 1.0], 'GSM5209554': [0.0, 31.0, 1.0], 'GSM5209555': [0.0, 47.0, 0.0], 'GSM5209556': [0.0, 76.0, 0.0], 'GSM5209557': [0.0, 27.0, 1.0], 'GSM5209558': [0.0, 36.0, 1.0], 'GSM5209559': [0.0, 19.0, 0.0], 'GSM5209560': [0.0, 38.0, 1.0], 'GSM5209561': [1.0, 24.0, 1.0], 'GSM5209562': [0.0, 33.0, 1.0], 'GSM5209563': [0.0, 23.0, 0.0], 'GSM5209564': [0.0, 20.0, 0.0], 'GSM5209565': [1.0, 38.0, 1.0], 'GSM5209566': [0.0, 68.0, 0.0], 'GSM5209567': [0.0, 23.0, 1.0], 'GSM5209568': [1.0, 39.0, 1.0], 'GSM5209569': [1.0, 23.0, 1.0], 'GSM5209570': [1.0, 23.0, 0.0], 'GSM5209571': [0.0, 39.0, 1.0], 'GSM5209572': [0.0, 38.0, 0.0], 'GSM5209573': [0.0, 20.0, 0.0], 'GSM5209574': [1.0, 54.0, 1.0], 'GSM5209575': [0.0, 41.0, 1.0], 'GSM5209576': [0.0, 48.0, 0.0], 'GSM5209577': [0.0, 74.0, 1.0], 'GSM5209578': [0.0, 69.0, 0.0], 'GSM5209579': [0.0, 42.0, 0.0], 'GSM5209580': [1.0, 25.0, 1.0], 'GSM5209581': [0.0, 35.0, 1.0], 'GSM5209582': [1.0, 30.0, 1.0], 'GSM5209583': [1.0, 23.0, 0.0], 'GSM5209584': [0.0, 36.0, 0.0], 'GSM5209585': [0.0, 61.0, 1.0], 'GSM5209586': [0.0, 37.0, 1.0], 'GSM5209587': [0.0, 50.0, 1.0], 'GSM5209588': [0.0, 46.0, 0.0], 'GSM5209589': [0.0, 22.0, 1.0], 'GSM5209590': [0.0, 21.0, 0.0], 'GSM5209591': [0.0, 44.0, 0.0], 'GSM5209592': [0.0, 24.0, 0.0], 'GSM5209593': [0.0, 24.0, 1.0], 'GSM5209594': [0.0, 23.0, 0.0], 'GSM5209595': [0.0, 47.0, 0.0], 'GSM5209596': [0.0, 21.0, 0.0], 'GSM5209597': [0.0, 19.0, 0.0], 'GSM5209598': [0.0, 56.0, 0.0], 'GSM5209599': [0.0, 25.0, 1.0], 'GSM5209600': [0.0, 54.0, 1.0], 'GSM5209601': [0.0, 51.0, 1.0], 'GSM5209602': [0.0, 43.0, 0.0], 'GSM5209603': [0.0, 53.0, 0.0], 'GSM5209604': [0.0, 66.0, 1.0], 'GSM5209605': [0.0, 69.0, 1.0], 'GSM5209606': [0.0, 22.0, 0.0], 'GSM5209607': [0.0, 56.0, 0.0], 'GSM5209608': [0.0, 51.0, 1.0], 'GSM5209609': [0.0, 69.0, 1.0], 'GSM5209610': [0.0, 53.0, 0.0], 'GSM5209611': [0.0, 61.0, 1.0], 'GSM5209612': [0.0, 52.0, 1.0], 'GSM5209613': [0.0, 42.0, 0.0], 'GSM5209614': [0.0, 56.0, 1.0], 'GSM5209615': [1.0, 58.0, 0.0], 'GSM5209616': [1.0, 20.0, 0.0], 'GSM5209617': [1.0, 17.0, 1.0], 'GSM5209618': [0.0, 40.0, 0.0], 'GSM5209619': [1.0, 44.0, 1.0], 'GSM5209620': [0.0, 45.0, 0.0], 'GSM5209621': [1.0, 19.0, 1.0], 'GSM5209622': [0.0, 28.0, 0.0], 'GSM5209623': [0.0, 57.0, 0.0], 'GSM5209624': [1.0, 41.0, 0.0], 'GSM5209625': [0.0, 34.0, 0.0], 'GSM5209626': [0.0, 54.0, 0.0], 'GSM5209627': [1.0, 59.0, 1.0], 'GSM5209628': [0.0, 20.0, 1.0]}\n", "Clinical data saved to ../../output/preprocess/Crohns_Disease/clinical_data/GSE169568.csv\n" ] } ], "source": [ "# 1. Check if this dataset likely contains gene expression data\n", "# Based on the background information, this dataset contains BeadChip microarray data (Illumina Human HT-12 v4), \n", "# which is indeed gene expression data. So we set is_gene_available to True.\n", "is_gene_available = True\n", "\n", "# 2. Identify keys and conversion functions for trait, age, and gender data\n", "# 2.1 Data Availability\n", "\n", "# Trait - Crohn's Disease (key 2 contains diagnostic information)\n", "trait_row = 2\n", "\n", "# Age data (key 1 contains age information)\n", "age_row = 1\n", "\n", "# Gender data (key 0 contains sex information)\n", "gender_row = 0\n", "\n", "# 2.2 Data Type Conversion\n", "\n", "def convert_trait(value):\n", " \"\"\"\n", " Convert trait values to binary format:\n", " 1 for Crohn's disease, 0 for controls (healthy or symptomatic)\n", " \"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract the value after colon\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Convert to binary based on diagnosis\n", " if \"Crohn's disease\" in value:\n", " return 1\n", " elif \"Healthy control\" in value or \"Symptomatic control\" in value or \"Ulcerative colitis\" in value:\n", " return 0\n", " else:\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"\n", " Convert age values to continuous format\n", " \"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract the value after colon\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " try:\n", " return float(value)\n", " except:\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"\n", " Convert gender values to binary format:\n", " 0 for female, 1 for male\n", " \"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract the value after colon\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip().lower()\n", " \n", " if \"female\" in value:\n", " return 0\n", " elif \"male\" in value:\n", " return 1\n", " else:\n", " return None\n", "\n", "# 3. Determine trait data availability and save metadata\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Extract clinical features using the provided library function\n", " clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical data\n", " preview = preview_df(clinical_df)\n", " print(\"Clinical Data Preview:\")\n", " print(preview)\n", " \n", " # Save the clinical data to the specified path\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " clinical_df.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "1db3cd6c", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "6e43c924", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:32:22.339554Z", "iopub.status.busy": "2025-03-25T08:32:22.339439Z", "iopub.status.idle": "2025-03-25T08:32:22.699990Z", "shell.execute_reply": "2025-03-25T08:32:22.699537Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "First 20 gene/probe identifiers:\n", "Index(['ILMN_1651209', 'ILMN_1651229', 'ILMN_1651254', 'ILMN_1651262',\n", " 'ILMN_1651278', 'ILMN_1651282', 'ILMN_1651285', 'ILMN_1651315',\n", " 'ILMN_1651336', 'ILMN_1651341', 'ILMN_1651343', 'ILMN_1651347',\n", " 'ILMN_1651354', 'ILMN_1651358', 'ILMN_1651373', 'ILMN_1651378',\n", " 'ILMN_1651385', 'ILMN_1651405', 'ILMN_1651415', 'ILMN_1651429'],\n", " dtype='object', name='ID')\n", "\n", "Gene data dimensions: 11727 genes × 205 samples\n" ] } ], "source": [ "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Extract the gene expression data from the matrix file\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 3. Print the first 20 row IDs (gene or probe identifiers)\n", "print(\"\\nFirst 20 gene/probe identifiers:\")\n", "print(gene_data.index[:20])\n", "\n", "# 4. Print the dimensions of the gene expression data\n", "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n", "\n", "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n", "is_gene_available = True\n" ] }, { "cell_type": "markdown", "id": "9bfd468e", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "0c93598b", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:32:22.701393Z", "iopub.status.busy": "2025-03-25T08:32:22.701261Z", "iopub.status.idle": "2025-03-25T08:32:22.703303Z", "shell.execute_reply": "2025-03-25T08:32:22.702987Z" } }, "outputs": [], "source": [ "# Looking at the gene identifiers, I can see they use the format ILMN_XXXXXXX\n", "# These are Illumina BeadArray probe IDs, not human gene symbols\n", "# Illumina probe IDs need to be mapped to human gene symbols for biological interpretation\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "757f43ca", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "0cd84a88", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:32:22.704495Z", "iopub.status.busy": "2025-03-25T08:32:22.704380Z", "iopub.status.idle": "2025-03-25T08:32:28.328415Z", "shell.execute_reply": "2025-03-25T08:32:28.328019Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene annotation dataframe column names:\n", "Index(['ID', 'Species', 'Source', 'Search_Key', 'Transcript', 'ILMN_Gene',\n", " 'Source_Reference_ID', 'RefSeq_ID', 'Unigene_ID', 'Entrez_Gene_ID',\n", " 'GI', 'Accession', 'Symbol', 'Protein_Product', 'Probe_Id',\n", " 'Array_Address_Id', 'Probe_Type', 'Probe_Start', 'SEQUENCE',\n", " 'Chromosome', 'Probe_Chr_Orientation', 'Probe_Coordinates', 'Cytoband',\n", " 'Definition', 'Ontology_Component', 'Ontology_Process',\n", " 'Ontology_Function', 'Synonyms', 'Obsolete_Probe_Id', 'GB_ACC'],\n", " dtype='object')\n", "\n", "Preview of gene annotation data:\n", "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050'], 'Species': [nan, nan, nan], 'Source': [nan, nan, nan], 'Search_Key': [nan, nan, nan], 'Transcript': [nan, nan, nan], 'ILMN_Gene': [nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan], 'RefSeq_ID': [nan, nan, nan], 'Unigene_ID': [nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan], 'GI': [nan, nan, nan], 'Accession': [nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low'], 'Protein_Product': [nan, nan, nan], 'Probe_Id': [nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0], 'Probe_Type': [nan, nan, nan], 'Probe_Start': [nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT'], 'Chromosome': [nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan], 'Cytoband': [nan, nan, nan], 'Definition': [nan, nan, nan], 'Ontology_Component': [nan, nan, nan], 'Ontology_Process': [nan, nan, nan], 'Ontology_Function': [nan, nan, nan], 'Synonyms': [nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan], 'GB_ACC': [nan, nan, nan]}\n" ] } ], "source": [ "# 1. First get the file paths using geo_get_relevant_filepaths function\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Extract gene annotation data from the SOFT file\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 3. Preview the gene annotation dataframe\n", "print(\"Gene annotation dataframe column names:\")\n", "print(gene_annotation.columns)\n", "\n", "# Preview the first few rows to understand the data structure\n", "print(\"\\nPreview of gene annotation data:\")\n", "annotation_preview = preview_df(gene_annotation, n=3)\n", "print(annotation_preview)\n", "\n", "# Maintain gene availability status as True based on previous steps\n", "is_gene_available = True\n" ] }, { "cell_type": "markdown", "id": "30f653d6", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "f187ccba", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:32:28.329823Z", "iopub.status.busy": "2025-03-25T08:32:28.329690Z", "iopub.status.idle": "2025-03-25T08:32:28.529372Z", "shell.execute_reply": "2025-03-25T08:32:28.529019Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Mapped gene data dimensions: 11148 genes × 205 samples\n", "\n", "First 10 gene symbols after mapping:\n", "Index(['A2BP1', 'A2LD1', 'A4GNT', 'AAAS', 'AACS', 'AADACL1', 'AADACL4',\n", " 'AAGAB', 'AAK1', 'AAMP'],\n", " dtype='object', name='Gene')\n" ] } ], "source": [ "# 1. Identify the appropriate columns in the gene annotation dataframe\n", "# The 'ID' column in gene_annotation contains probe IDs that match gene_data.index\n", "# The 'Symbol' column contains gene symbols that we want to map to\n", "\n", "# 2. Get gene mapping dataframe\n", "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n", "\n", "# Ensure no empty gene symbols\n", "gene_mapping = gene_mapping.dropna(subset=['Gene'])\n", "\n", "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "\n", "# Print dimensions of the processed gene expression data\n", "print(f\"\\nMapped gene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n", "\n", "# Preview the first few gene symbols after mapping\n", "print(\"\\nFirst 10 gene symbols after mapping:\")\n", "print(gene_data.index[:10])\n" ] }, { "cell_type": "markdown", "id": "767e30fc", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 8, "id": "5a08b637", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:32:28.530833Z", "iopub.status.busy": "2025-03-25T08:32:28.530713Z", "iopub.status.idle": "2025-03-25T08:32:38.607836Z", "shell.execute_reply": "2025-03-25T08:32:38.607384Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalizing gene symbols...\n", "Gene data shape after normalization: 11039 genes × 205 samples\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Normalized gene expression data saved to ../../output/preprocess/Crohns_Disease/gene_data/GSE169568.csv\n", "Extracting clinical features from the original source...\n", "Extracted clinical features preview:\n", "{'GSM5209429': [0.0, 20.0, 0.0], 'GSM5209430': [0.0, 39.0, 1.0], 'GSM5209431': [0.0, 56.0, 0.0], 'GSM5209432': [0.0, 31.0, 0.0], 'GSM5209433': [1.0, 22.0, 1.0], 'GSM5209434': [0.0, 32.0, 1.0], 'GSM5209435': [0.0, 32.0, 0.0], 'GSM5209436': [0.0, 30.0, 0.0], 'GSM5209437': [0.0, 30.0, 1.0], 'GSM5209438': [0.0, 18.0, 0.0], 'GSM5209439': [0.0, 60.0, 0.0], 'GSM5209440': [0.0, 33.0, 1.0], 'GSM5209441': [0.0, 27.0, 0.0], 'GSM5209442': [0.0, 30.0, 1.0], 'GSM5209443': [0.0, 34.0, 0.0], 'GSM5209444': [0.0, 57.0, 1.0], 'GSM5209445': [0.0, 27.0, 1.0], 'GSM5209446': [0.0, 20.0, 0.0], 'GSM5209447': [0.0, 30.0, 0.0], 'GSM5209448': [1.0, 27.0, 1.0], 'GSM5209449': [0.0, 32.0, 1.0], 'GSM5209450': [0.0, 72.0, 0.0], 'GSM5209451': [1.0, 35.0, 0.0], 'GSM5209452': [0.0, 24.0, 0.0], 'GSM5209453': [1.0, 21.0, 1.0], 'GSM5209454': [0.0, 62.0, 1.0], 'GSM5209455': [1.0, 41.0, 0.0], 'GSM5209456': [0.0, 22.0, 0.0], 'GSM5209457': [0.0, 18.0, 0.0], 'GSM5209458': [0.0, 20.0, 1.0], 'GSM5209459': [1.0, 29.0, 0.0], 'GSM5209460': [0.0, 46.0, 1.0], 'GSM5209461': [0.0, 31.0, 1.0], 'GSM5209462': [0.0, 34.0, 0.0], 'GSM5209463': [0.0, 32.0, 1.0], 'GSM5209464': [0.0, 49.0, 0.0], 'GSM5209465': [1.0, 76.0, 1.0], 'GSM5209466': [1.0, 23.0, 0.0], 'GSM5209467': [0.0, 37.0, 1.0], 'GSM5209468': [0.0, 30.0, 1.0], 'GSM5209469': [0.0, 64.0, 1.0], 'GSM5209470': [0.0, 23.0, 1.0], 'GSM5209471': [0.0, 24.0, 0.0], 'GSM5209472': [0.0, 26.0, 1.0], 'GSM5209473': [1.0, 19.0, 1.0], 'GSM5209474': [0.0, 60.0, 0.0], 'GSM5209475': [1.0, 17.0, 0.0], 'GSM5209476': [1.0, 41.0, 0.0], 'GSM5209477': [1.0, 48.0, 0.0], 'GSM5209478': [0.0, 26.0, 0.0], 'GSM5209479': [0.0, 35.0, 1.0], 'GSM5209480': [0.0, 22.0, 0.0], 'GSM5209481': [0.0, 73.0, 0.0], 'GSM5209482': [1.0, 69.0, 1.0], 'GSM5209483': [0.0, 57.0, 1.0], 'GSM5209484': [0.0, 50.0, 0.0], 'GSM5209485': [0.0, 27.0, 1.0], 'GSM5209486': [0.0, 69.0, 1.0], 'GSM5209487': [0.0, 28.0, 1.0], 'GSM5209488': [0.0, 51.0, 0.0], 'GSM5209489': [0.0, 64.0, 1.0], 'GSM5209490': [0.0, 52.0, 1.0], 'GSM5209491': [0.0, 55.0, 1.0], 'GSM5209492': [0.0, 47.0, 1.0], 'GSM5209493': [0.0, 61.0, 0.0], 'GSM5209494': [0.0, 29.0, 0.0], 'GSM5209495': [0.0, 36.0, 0.0], 'GSM5209496': [0.0, 24.0, 0.0], 'GSM5209497': [0.0, 24.0, 0.0], 'GSM5209498': [0.0, 21.0, 0.0], 'GSM5209499': [0.0, 54.0, 0.0], 'GSM5209500': [0.0, 24.0, 0.0], 'GSM5209501': [0.0, 78.0, 0.0], 'GSM5209502': [0.0, 23.0, 1.0], 'GSM5209503': [0.0, 27.0, 0.0], 'GSM5209504': [0.0, 21.0, 1.0], 'GSM5209505': [0.0, 34.0, 1.0], 'GSM5209506': [0.0, 51.0, 1.0], 'GSM5209507': [1.0, 31.0, 0.0], 'GSM5209508': [1.0, 40.0, 0.0], 'GSM5209509': [1.0, 24.0, 0.0], 'GSM5209510': [1.0, 24.0, 1.0], 'GSM5209511': [0.0, 23.0, 0.0], 'GSM5209512': [0.0, 33.0, 1.0], 'GSM5209513': [0.0, 25.0, 0.0], 'GSM5209514': [0.0, 23.0, 0.0], 'GSM5209515': [0.0, 41.0, 1.0], 'GSM5209516': [0.0, 32.0, 1.0], 'GSM5209517': [1.0, 23.0, 0.0], 'GSM5209518': [0.0, 36.0, 1.0], 'GSM5209519': [1.0, 26.0, 1.0], 'GSM5209520': [1.0, 23.0, 0.0], 'GSM5209521': [1.0, 36.0, 1.0], 'GSM5209522': [1.0, 40.0, 0.0], 'GSM5209523': [1.0, 26.0, 0.0], 'GSM5209524': [1.0, 18.0, 0.0], 'GSM5209525': [0.0, 35.0, 0.0], 'GSM5209526': [0.0, 24.0, 0.0], 'GSM5209527': [0.0, 32.0, 1.0], 'GSM5209528': [0.0, 61.0, 0.0], 'GSM5209529': [0.0, 34.0, 0.0], 'GSM5209530': [0.0, 54.0, 0.0], 'GSM5209531': [1.0, 21.0, 0.0], 'GSM5209532': [0.0, 28.0, 1.0], 'GSM5209533': [1.0, 38.0, 0.0], 'GSM5209534': [1.0, 69.0, 1.0], 'GSM5209535': [0.0, 28.0, 0.0], 'GSM5209536': [0.0, 27.0, 1.0], 'GSM5209537': [0.0, 33.0, 1.0], 'GSM5209538': [0.0, 24.0, 1.0], 'GSM5209539': [0.0, 19.0, 1.0], 'GSM5209540': [1.0, 32.0, 1.0], 'GSM5209541': [0.0, 40.0, 1.0], 'GSM5209542': [0.0, 39.0, 0.0], 'GSM5209543': [1.0, 29.0, 0.0], 'GSM5209544': [1.0, 26.0, 1.0], 'GSM5209545': [1.0, 26.0, 1.0], 'GSM5209546': [0.0, 18.0, 0.0], 'GSM5209547': [0.0, 38.0, 1.0], 'GSM5209548': [0.0, 59.0, 1.0], 'GSM5209549': [1.0, 53.0, 1.0], 'GSM5209550': [0.0, 41.0, 1.0], 'GSM5209551': [1.0, 24.0, 0.0], 'GSM5209552': [1.0, 28.0, 0.0], 'GSM5209553': [1.0, 30.0, 1.0], 'GSM5209554': [0.0, 31.0, 1.0], 'GSM5209555': [0.0, 47.0, 0.0], 'GSM5209556': [0.0, 76.0, 0.0], 'GSM5209557': [0.0, 27.0, 1.0], 'GSM5209558': [0.0, 36.0, 1.0], 'GSM5209559': [0.0, 19.0, 0.0], 'GSM5209560': [0.0, 38.0, 1.0], 'GSM5209561': [1.0, 24.0, 1.0], 'GSM5209562': [0.0, 33.0, 1.0], 'GSM5209563': [0.0, 23.0, 0.0], 'GSM5209564': [0.0, 20.0, 0.0], 'GSM5209565': [1.0, 38.0, 1.0], 'GSM5209566': [0.0, 68.0, 0.0], 'GSM5209567': [0.0, 23.0, 1.0], 'GSM5209568': [1.0, 39.0, 1.0], 'GSM5209569': [1.0, 23.0, 1.0], 'GSM5209570': [1.0, 23.0, 0.0], 'GSM5209571': [0.0, 39.0, 1.0], 'GSM5209572': [0.0, 38.0, 0.0], 'GSM5209573': [0.0, 20.0, 0.0], 'GSM5209574': [1.0, 54.0, 1.0], 'GSM5209575': [0.0, 41.0, 1.0], 'GSM5209576': [0.0, 48.0, 0.0], 'GSM5209577': [0.0, 74.0, 1.0], 'GSM5209578': [0.0, 69.0, 0.0], 'GSM5209579': [0.0, 42.0, 0.0], 'GSM5209580': [1.0, 25.0, 1.0], 'GSM5209581': [0.0, 35.0, 1.0], 'GSM5209582': [1.0, 30.0, 1.0], 'GSM5209583': [1.0, 23.0, 0.0], 'GSM5209584': [0.0, 36.0, 0.0], 'GSM5209585': [0.0, 61.0, 1.0], 'GSM5209586': [0.0, 37.0, 1.0], 'GSM5209587': [0.0, 50.0, 1.0], 'GSM5209588': [0.0, 46.0, 0.0], 'GSM5209589': [0.0, 22.0, 1.0], 'GSM5209590': [0.0, 21.0, 0.0], 'GSM5209591': [0.0, 44.0, 0.0], 'GSM5209592': [0.0, 24.0, 0.0], 'GSM5209593': [0.0, 24.0, 1.0], 'GSM5209594': [0.0, 23.0, 0.0], 'GSM5209595': [0.0, 47.0, 0.0], 'GSM5209596': [0.0, 21.0, 0.0], 'GSM5209597': [0.0, 19.0, 0.0], 'GSM5209598': [0.0, 56.0, 0.0], 'GSM5209599': [0.0, 25.0, 1.0], 'GSM5209600': [0.0, 54.0, 1.0], 'GSM5209601': [0.0, 51.0, 1.0], 'GSM5209602': [0.0, 43.0, 0.0], 'GSM5209603': [0.0, 53.0, 0.0], 'GSM5209604': [0.0, 66.0, 1.0], 'GSM5209605': [0.0, 69.0, 1.0], 'GSM5209606': [0.0, 22.0, 0.0], 'GSM5209607': [0.0, 56.0, 0.0], 'GSM5209608': [0.0, 51.0, 1.0], 'GSM5209609': [0.0, 69.0, 1.0], 'GSM5209610': [0.0, 53.0, 0.0], 'GSM5209611': [0.0, 61.0, 1.0], 'GSM5209612': [0.0, 52.0, 1.0], 'GSM5209613': [0.0, 42.0, 0.0], 'GSM5209614': [0.0, 56.0, 1.0], 'GSM5209615': [1.0, 58.0, 0.0], 'GSM5209616': [1.0, 20.0, 0.0], 'GSM5209617': [1.0, 17.0, 1.0], 'GSM5209618': [0.0, 40.0, 0.0], 'GSM5209619': [1.0, 44.0, 1.0], 'GSM5209620': [0.0, 45.0, 0.0], 'GSM5209621': [1.0, 19.0, 1.0], 'GSM5209622': [0.0, 28.0, 0.0], 'GSM5209623': [0.0, 57.0, 0.0], 'GSM5209624': [1.0, 41.0, 0.0], 'GSM5209625': [0.0, 34.0, 0.0], 'GSM5209626': [0.0, 54.0, 0.0], 'GSM5209627': [1.0, 59.0, 1.0], 'GSM5209628': [0.0, 20.0, 1.0]}\n", "Clinical data shape: (3, 205)\n", "Clinical features saved to ../../output/preprocess/Crohns_Disease/clinical_data/GSE169568.csv\n", "Linking clinical and genetic data...\n", "Linked data shape: (205, 11042)\n", "Handling missing values...\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Data shape after handling missing values: (205, 11042)\n", "\n", "Checking for bias in feature variables:\n", "For the feature 'Crohns_Disease', the least common label is '1.0' with 52 occurrences. This represents 25.37% of the dataset.\n", "The distribution of the feature 'Crohns_Disease' in this dataset is fine.\n", "\n", "Quartiles for 'Age':\n", " 25%: 24.0\n", " 50% (Median): 34.0\n", " 75%: 51.0\n", "Min: 17.0\n", "Max: 78.0\n", "The distribution of the feature 'Age' in this dataset is fine.\n", "\n", "For the feature 'Gender', the least common label is '1.0' with 98 occurrences. This represents 47.80% of the dataset.\n", "The distribution of the feature 'Gender' in this dataset is fine.\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Linked data saved to ../../output/preprocess/Crohns_Disease/GSE169568.csv\n", "Final dataset shape: (205, 11042)\n" ] } ], "source": [ "# 1. Check if gene data is available after mapping\n", "if gene_data.shape[0] == 0:\n", " print(\"Error: Gene expression matrix is empty after mapping.\")\n", " # Mark the dataset as not usable due to lack of gene expression data\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=False, # No usable gene data\n", " is_trait_available=True,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"Failed to map probe IDs to gene symbols. The annotation format may not be compatible with the extraction methods.\"\n", " )\n", " print(\"Dataset deemed not usable due to lack of gene expression data.\")\n", "else:\n", " # Only proceed with normalization if we have gene data\n", " print(\"Normalizing gene symbols...\")\n", " gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n", " print(f\"Gene data shape after normalization: {gene_data_normalized.shape[0]} genes × {gene_data_normalized.shape[1]} samples\")\n", "\n", " # Save the normalized gene data\n", " os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", " gene_data_normalized.to_csv(out_gene_data_file)\n", " print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n", " \n", " # Extract clinical features from the original data source\n", " print(\"Extracting clinical features from the original source...\")\n", " # Get background information and clinical data again\n", " background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", " clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", " background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", " \n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " print(\"Extracted clinical features preview:\")\n", " print(preview_df(selected_clinical_df))\n", " print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n", " \n", " # Save the extracted clinical features\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical features saved to {out_clinical_data_file}\")\n", " \n", " # Link clinical and genetic data\n", " print(\"Linking clinical and genetic data...\")\n", " linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data_normalized)\n", " print(f\"Linked data shape: {linked_data.shape}\")\n", " \n", " # Check if the linked data has adequate data\n", " if linked_data.shape[0] == 0 or linked_data.shape[1] <= 4: # 4 is an arbitrary small number\n", " print(\"Error: Linked data has insufficient samples or features.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=True,\n", " df=linked_data,\n", " note=\"Failed to properly link gene expression data with clinical features.\"\n", " )\n", " print(\"Dataset deemed not usable due to linking failure.\")\n", " else:\n", " # Handle missing values systematically\n", " print(\"Handling missing values...\")\n", " linked_data_clean = handle_missing_values(linked_data, trait_col=trait)\n", " print(f\"Data shape after handling missing values: {linked_data_clean.shape}\")\n", " \n", " # Check if there are still samples after missing value handling\n", " if linked_data_clean.shape[0] == 0:\n", " print(\"Error: No samples remain after handling missing values.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"All samples were removed during missing value handling.\"\n", " )\n", " print(\"Dataset deemed not usable as all samples were filtered out.\")\n", " else:\n", " # Check if the dataset is biased\n", " print(\"\\nChecking for bias in feature variables:\")\n", " is_biased, linked_data_final = judge_and_remove_biased_features(linked_data_clean, trait)\n", " \n", " # Conduct final quality validation\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_biased,\n", " df=linked_data_final,\n", " note=\"Dataset contains gene expression data for Crohn's Disease patients, examining response to Infliximab treatment.\"\n", " )\n", " \n", " # Save linked data if usable\n", " if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data_final.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", " print(f\"Final dataset shape: {linked_data_final.shape}\")\n", " else:\n", " print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }