{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "3ff89209", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:47:07.682892Z", "iopub.status.busy": "2025-03-25T05:47:07.682779Z", "iopub.status.idle": "2025-03-25T05:47:07.849334Z", "shell.execute_reply": "2025-03-25T05:47:07.849013Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Huntingtons_Disease\"\n", "cohort = \"GSE95843\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Huntingtons_Disease\"\n", "in_cohort_dir = \"../../input/GEO/Huntingtons_Disease/GSE95843\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Huntingtons_Disease/GSE95843.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Huntingtons_Disease/gene_data/GSE95843.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Huntingtons_Disease/clinical_data/GSE95843.csv\"\n", "json_path = \"../../output/preprocess/Huntingtons_Disease/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "f2e4b034", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "7de7bbdb", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:47:07.850713Z", "iopub.status.busy": "2025-03-25T05:47:07.850570Z", "iopub.status.idle": "2025-03-25T05:47:07.976322Z", "shell.execute_reply": "2025-03-25T05:47:07.976013Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Gene expression from embryoid bodies derived from HBG3 HB9 ES cells\"\n", "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n", "!Series_overall_design\t\"Refer to individual Series\"\n", "Sample Characteristics Dictionary:\n", "{0: ['strain: F1 progeny of two different strains (C57BL/6 and SJL)', 'strain: B6CBA-Tg(HDexon1)62Gpb/3J'], 1: ['time point: 9 weeks cultures', 'time point: 10 weeks cultures', \"treatment: plasma from a Huntington's disease mouse model\"]}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "33dc60b8", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "545b1d9c", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:47:07.977859Z", "iopub.status.busy": "2025-03-25T05:47:07.977606Z", "iopub.status.idle": "2025-03-25T05:47:08.000304Z", "shell.execute_reply": "2025-03-25T05:47:07.999978Z" } }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the background information and sample characteristics, it appears this dataset contains\n", "# information about amyloid beta levels, but not gene expression data\n", "is_gene_available = False\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# Looking at the sample characteristics dictionary, we don't see any clear information about \n", "# Huntington's Disease, age, or gender\n", "\n", "# 2.1 Data Availability\n", "trait_row = None # No information about Huntington's Disease in the samples\n", "age_row = None # No age information available\n", "gender_row = None # No gender information available\n", "\n", "# 2.2 Data Type Conversion (defining functions even though data is unavailable)\n", "def convert_trait(value):\n", " \"\"\"Convert trait value to binary (0 for control, 1 for Huntington's Disease)\"\"\"\n", " if value is None:\n", " return None\n", " value = value.lower() if isinstance(value, str) else str(value).lower()\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " if \"disease\" in value or \"patient\" in value or \"case\" in value or \"huntington\" in value or \"hd\" in value:\n", " return 1\n", " elif \"control\" in value or \"healthy\" in value or \"normal\" in value:\n", " return 0\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age value to continuous\"\"\"\n", " if value is None:\n", " return None\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " try:\n", " return float(value)\n", " except:\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n", " if value is None:\n", " return None\n", " value = value.lower() if isinstance(value, str) else str(value).lower()\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " if \"female\" in value or \"f\" == value.strip():\n", " return 0\n", " elif \"male\" in value or \"m\" == value.strip():\n", " return 1\n", " return None\n", "\n", "# 3. Save Metadata\n", "# We'll set is_trait_available to False as we couldn't find trait information\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, \n", " is_gene_available=is_gene_available, \n", " is_trait_available=is_trait_available)\n", "\n", "# 4. Clinical Feature Extraction - Skip this step as trait_row is None\n" ] }, { "cell_type": "markdown", "id": "88d4e288", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "dbcd1c7c", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:47:08.001603Z", "iopub.status.busy": "2025-03-25T05:47:08.001500Z", "iopub.status.idle": "2025-03-25T05:47:08.206862Z", "shell.execute_reply": "2025-03-25T05:47:08.206481Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Matrix file found: ../../input/GEO/Huntingtons_Disease/GSE95843/GSE95843-GPL23148_series_matrix.txt.gz\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Gene data shape: (19620, 65)\n", "First 20 gene/probe identifiers:\n", "Index(['a', 'A030009H04Rik', 'A130010J15Rik', 'A130023I24Rik', 'A1bg', 'A1cf',\n", " 'A230006K03Rik', 'A230046K03Rik', 'A230050P20Rik', 'A230051G13Rik',\n", " 'A230051N06Rik', 'A230083G16Rik', 'A2ld1', 'A2m', 'A330021E22Rik',\n", " 'A330049M08Rik', 'A330070K13Rik', 'A3galt2', 'A430005L14Rik',\n", " 'A430033K04Rik'],\n", " dtype='object', name='ID')\n" ] } ], "source": [ "# 1. Get the SOFT and matrix file paths again \n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "print(f\"Matrix file found: {matrix_file}\")\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(f\"Gene data shape: {gene_data.shape}\")\n", " \n", " # 3. Print the first 20 row IDs (gene or probe identifiers)\n", " print(\"First 20 gene/probe identifiers:\")\n", " print(gene_data.index[:20])\n", "except Exception as e:\n", " print(f\"Error extracting gene data: {e}\")\n" ] }, { "cell_type": "markdown", "id": "e6ea8fda", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "ab3add52", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:47:08.208307Z", "iopub.status.busy": "2025-03-25T05:47:08.208190Z", "iopub.status.idle": "2025-03-25T05:47:08.210136Z", "shell.execute_reply": "2025-03-25T05:47:08.209839Z" } }, "outputs": [], "source": [ "# Based on the provided output, the gene identifiers appear to be human gene symbols.\n", "# These are standard gene symbols like A1BG, A2M, AAAS, etc. that match official human gene nomenclature.\n", "# They are not probe IDs (which would typically be numeric or have manufacturer prefixes)\n", "# and they are not other types of identifiers that would require mapping.\n", "\n", "requires_gene_mapping = False\n" ] }, { "cell_type": "markdown", "id": "b08f86be", "metadata": {}, "source": [ "### Step 5: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 6, "id": "939f6a7f", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:47:08.211437Z", "iopub.status.busy": "2025-03-25T05:47:08.211334Z", "iopub.status.idle": "2025-03-25T05:47:09.069110Z", "shell.execute_reply": "2025-03-25T05:47:09.068706Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalizing gene symbols...\n", "Gene data shape after normalization: (14859, 65)\n", "First 10 normalized gene symbols:\n", "Index(['A1BG', 'A1CF', 'A2M', 'A3GALT2', 'A4GALT', 'A4GNT', 'AAAS', 'AACS',\n", " 'AADAC', 'AADACL3'],\n", " dtype='object', name='ID')\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Normalized gene data saved to: ../../output/preprocess/Huntingtons_Disease/gene_data/GSE95843.csv\n", "\n", "Validating cohort usability...\n", "Dataset usability: False\n", "Dataset lacks trait information for Huntington's Disease, so no linked data will be saved.\n" ] } ], "source": [ "# Based on previous steps, this dataset does not contain Huntington's Disease trait information\n", "# and trait_row was found to be None, so we need to adjust our approach\n", "\n", "# 1. First, normalize the gene symbols in the gene data we extracted in Step 3\n", "print(\"Normalizing gene symbols...\")\n", "# Make sure output directory exists\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "\n", "# Normalize gene symbols directly from gene_data variable obtained in Step 3\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", "print(\"First 10 normalized gene symbols:\")\n", "print(normalized_gene_data.index[:10])\n", "\n", "# Save the normalized gene data\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to: {out_gene_data_file}\")\n", "\n", "# 2. Since we don't have trait data, we need to prepare a proper dataframe for validation\n", "# and set is_biased=True since without trait data, the dataset is biased/unusable for trait analysis\n", "dummy_df = normalized_gene_data.iloc[:5, :5].reset_index() # Create small sample for efficiency\n", "is_biased = True # Without trait data, the dataset is considered biased/unusable\n", "\n", "print(\"\\nValidating cohort usability...\")\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True, # We did find gene expression data\n", " is_trait_available=False, # Previous steps found no trait information\n", " is_biased=is_biased, # Dataset is biased without trait data\n", " df=dummy_df, # Use a small sample of the data for validation\n", " note=\"This dataset contains gene expression data but lacks Huntington's Disease trait information.\"\n", ")\n", "\n", "print(f\"Dataset usability: {is_usable}\")\n", "print(\"Dataset lacks trait information for Huntington's Disease, so no linked data will be saved.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }