{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "dffed653", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:05:55.665862Z", "iopub.status.busy": "2025-03-25T06:05:55.665645Z", "iopub.status.idle": "2025-03-25T06:05:55.834763Z", "shell.execute_reply": "2025-03-25T06:05:55.834354Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Pancreatic_Cancer\"\n", "cohort = \"GSE157494\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Pancreatic_Cancer\"\n", "in_cohort_dir = \"../../input/GEO/Pancreatic_Cancer/GSE157494\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Pancreatic_Cancer/GSE157494.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Pancreatic_Cancer/gene_data/GSE157494.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Pancreatic_Cancer/clinical_data/GSE157494.csv\"\n", "json_path = \"../../output/preprocess/Pancreatic_Cancer/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "f542b4c5", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "a55f4f9d", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:05:55.836025Z", "iopub.status.busy": "2025-03-25T06:05:55.835866Z", "iopub.status.idle": "2025-03-25T06:05:55.991602Z", "shell.execute_reply": "2025-03-25T06:05:55.991022Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Improved patient-derived tumor models in pancreatic ductal adenocarcinoma employing orthotopic implantation\"\n", "!Series_summary\t\"Pancreatic ductal adenocarcinoma has a very poor prognosis, and new therapies and preclinical models are urgently needed. We developed patient-derived xenografts (PDXs), established PDX-derived cell lines (PDCLs), and generated cell line-derived xenografts (CDXs), and integrated these to create 13 matched trios, as systematic models for this cancer. Orthotopic implantation (OI) of PDCLs showed tumorigenesis and metastases to the liver and peritoneum. Morphological comparisons of OI-CDX and OI-PDX with passaged tumors showed that histopathological features of the original tumor were maintained in both models. Molecular alterations in PDX tumors (including those to KRAS, TP53, SMAD4, and CDKN2A) were similar to those in the respective PDCLs and CDX tumors. Comparing gene expression in PDCLs, ectopic tumors, and OI tumors, CXCR4 and CXCL12 genes were specifically upregulated in OI tumors, whose immunohistochemical profiles suggested epithelial-mesenchymal transition and adeno-squamous trans-differentiation. These patient-derived tumor models provide useful tools for preclinical research into pancreatic ductal adenocarcinoma.\"\n", "!Series_summary\t\"We performed comprehensive gene expression profiling of 13 pancreatic cancer cell lines, 14 CDX and 14 PDX tumors by Affymetrix Gene Chip HG-U133Plus2.0.\"\n", "!Series_overall_design\t\"Forty one RNA samples from cell lines, CDXs, and PDXs of human pancreactic cancer.\"\n", "Sample Characteristics Dictionary:\n", "{0: ['sample type: xenografted tumor', 'sample type: Cell line']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "2f579214", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "2675654e", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:05:55.993826Z", "iopub.status.busy": "2025-03-25T06:05:55.993706Z", "iopub.status.idle": "2025-03-25T06:05:56.002984Z", "shell.execute_reply": "2025-03-25T06:05:56.002509Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Preview of clinical data:\n", "{'GSM4767149': [1.0], 'GSM4767150': [1.0], 'GSM4767151': [1.0], 'GSM4767152': [1.0], 'GSM4767153': [1.0], 'GSM4767154': [1.0], 'GSM4767155': [1.0], 'GSM4767156': [1.0], 'GSM4767157': [1.0], 'GSM4767158': [1.0], 'GSM4767159': [1.0], 'GSM4767160': [1.0], 'GSM4767161': [1.0], 'GSM4767162': [1.0], 'GSM4767163': [0.0], 'GSM4767164': [0.0], 'GSM4767165': [0.0], 'GSM4767166': [0.0], 'GSM4767167': [0.0], 'GSM4767168': [0.0], 'GSM4767169': [0.0], 'GSM4767170': [0.0], 'GSM4767171': [0.0], 'GSM4767172': [0.0], 'GSM4767173': [0.0], 'GSM4767174': [0.0], 'GSM4767175': [0.0], 'GSM4767176': [1.0], 'GSM4767177': [1.0], 'GSM4767178': [1.0], 'GSM4767179': [1.0], 'GSM4767180': [1.0], 'GSM4767181': [1.0], 'GSM4767182': [1.0], 'GSM4767183': [1.0], 'GSM4767184': [1.0], 'GSM4767185': [1.0], 'GSM4767186': [1.0], 'GSM4767187': [1.0], 'GSM4767188': [1.0], 'GSM4767189': [1.0]}\n", "Clinical data saved to ../../output/preprocess/Pancreatic_Cancer/clinical_data/GSE157494.csv\n" ] } ], "source": [ "import pandas as pd\n", "import json\n", "import os\n", "from typing import Optional, Callable, Dict, Any, List, Union\n", "\n", "# Checking available data \n", "is_gene_available = True # Based on series summary, they used Affymetrix Gene Chip HG-U133Plus2.0\n", "\n", "# 2.1 Data Availability\n", "# Sample characteristics dictionary shows sample types but no direct trait, age, or gender info\n", "# Since this is a patient-derived xenograft study, we consider trait as the cancer status\n", "# From context, we know all samples are pancreatic cancer (either xenografts or cell lines)\n", "trait_row = 0 # Using the sample type row to determine if it's a tumor or cell line\n", "age_row = None # Age information is not available\n", "gender_row = None # Gender information is not available\n", "\n", "# 2.2 Data Type Conversion\n", "def convert_trait(value: str) -> int:\n", " \"\"\"Convert sample type to binary trait (1 for tumor, 0 for cell line)\"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract the value after colon if present\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Map the sample type to binary values\n", " if 'xenografted tumor' in value.lower():\n", " return 1 # Tumor\n", " elif 'cell line' in value.lower():\n", " return 0 # Cell line\n", " else:\n", " return None # Unknown\n", "\n", "def convert_age(value: str) -> Optional[float]:\n", " \"\"\"Convert age to float (not used as age is not available)\"\"\"\n", " return None\n", "\n", "def convert_gender(value: str) -> Optional[int]:\n", " \"\"\"Convert gender to binary (not used as gender is not available)\"\"\"\n", " return None\n", "\n", "# 3. Save Metadata\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# Only execute if trait_row is not None\n", "if trait_row is not None:\n", " # We assume clinical_data is already available from previous step\n", " try:\n", " # Try to access clinical_data (assuming it was created in previous steps)\n", " clinical_data\n", " except NameError:\n", " # If clinical_data is not defined, create an empty DataFrame with the structure from sample characteristics\n", " clinical_data = pd.DataFrame({\n", " 0: ['sample type: xenografted tumor', 'sample type: Cell line']\n", " })\n", " \n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical features\n", " preview_data = preview_df(selected_clinical_df)\n", " print(\"Preview of clinical data:\")\n", " print(preview_data)\n", " \n", " # Create directory if it doesn't exist\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " \n", " # Save the clinical data\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "a0be620b", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "c659b8c7", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:05:56.004664Z", "iopub.status.busy": "2025-03-25T06:05:56.004549Z", "iopub.status.idle": "2025-03-25T06:05:56.248273Z", "shell.execute_reply": "2025-03-25T06:05:56.247730Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at', '1294_at',\n", " '1316_at', '1320_at', '1405_i_at', '1431_at', '1438_at', '1487_at',\n", " '1494_f_at', '1552256_a_at', '1552257_a_at', '1552258_at', '1552261_at',\n", " '1552263_at', '1552264_a_at', '1552266_at'],\n", " dtype='object', name='ID')\n" ] } ], "source": [ "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "4c86160a", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "0f3df04b", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:05:56.249763Z", "iopub.status.busy": "2025-03-25T06:05:56.249636Z", "iopub.status.idle": "2025-03-25T06:05:56.251853Z", "shell.execute_reply": "2025-03-25T06:05:56.251471Z" } }, "outputs": [], "source": [ "# Analyze the gene identifiers\n", "# The identifiers like '1007_s_at', '1053_at', '117_at', etc. are Affymetrix probe IDs\n", "# from the HG-U133 series microarray platform, not standard human gene symbols\n", "# These need to be mapped to human gene symbols for proper analysis\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "ddea1711", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "c2c85aab", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:05:56.253107Z", "iopub.status.busy": "2025-03-25T06:05:56.252991Z", "iopub.status.idle": "2025-03-25T06:06:00.805404Z", "shell.execute_reply": "2025-03-25T06:06:00.804732Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene annotation preview:\n", "{'ID': ['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1 /// MIR4640', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780 /// 100616237', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409 /// XM_006715073'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype', '0001655 // urogenital system development // inferred from sequence or structural similarity /// 0001656 // metanephros development // inferred from electronic annotation /// 0001658 // branching involved in ureteric bud morphogenesis // inferred from expression pattern /// 0001822 // kidney development // inferred from expression pattern /// 0001823 // mesonephros development // inferred from sequence or structural similarity /// 0003337 // mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from expression pattern /// 0006351 // transcription, DNA-templated // inferred from direct assay /// 0006355 // regulation of transcription, DNA-templated // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0007417 // central nervous system development // inferred from expression pattern /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from expression pattern /// 0030878 // thyroid gland development // inferred from mutant phenotype /// 0038194 // thyroid-stimulating hormone signaling pathway // traceable author statement /// 0039003 // pronephric field specification // inferred from sequence or structural similarity /// 0042472 // inner ear morphogenesis // inferred from sequence or structural similarity /// 0042981 // regulation of apoptotic process // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-templated // inferred from direct assay /// 0045893 // positive regulation of transcription, DNA-templated // inferred from sequence or structural similarity /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from direct assay /// 0048793 // pronephros development // inferred from sequence or structural similarity /// 0071371 // cellular response to gonadotropin stimulus // inferred from direct assay /// 0071599 // otic vesicle development // inferred from expression pattern /// 0072050 // S-shaped body morphogenesis // inferred from electronic annotation /// 0072073 // kidney epithelium development // inferred from electronic annotation /// 0072108 // positive regulation of mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from sequence or structural similarity /// 0072164 // mesonephric tubule development // inferred from electronic annotation /// 0072207 // metanephric epithelium development // inferred from expression pattern /// 0072221 // metanephric distal convoluted tubule development // inferred from sequence or structural similarity /// 0072278 // metanephric comma-shaped body morphogenesis // inferred from expression pattern /// 0072284 // metanephric S-shaped body morphogenesis // inferred from expression pattern /// 0072289 // metanephric nephron tubule formation // inferred from sequence or structural similarity /// 0072305 // negative regulation of mesenchymal cell apoptotic process involved in metanephric nephron morphogenesis // inferred from sequence or structural similarity /// 0072307 // regulation of metanephric nephron tubule epithelial cell differentiation // inferred from sequence or structural similarity /// 0090190 // positive regulation of branching involved in ureteric bud morphogenesis // inferred from sequence or structural similarity /// 1900212 // negative regulation of mesenchymal cell apoptotic process involved in metanephros development // inferred from sequence or structural similarity /// 1900215 // negative regulation of apoptotic process involved in metanephric collecting duct development // inferred from sequence or structural similarity /// 1900218 // negative regulation of apoptotic process involved in metanephric nephron tubule development // inferred from sequence or structural similarity /// 2000594 // positive regulation of metanephric DCT cell differentiation // inferred from sequence or structural similarity /// 2000611 // positive regulation of thyroid hormone generation // inferred from mutant phenotype /// 2000612 // regulation of thyroid-stimulating hormone secretion // inferred from mutant phenotype', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007602 // phototransduction // inferred from electronic annotation /// 0007603 // phototransduction, visible light // traceable author statement /// 0016056 // rhodopsin mediated signaling pathway // traceable author statement /// 0022400 // regulation of rhodopsin mediated signaling pathway // traceable author statement /// 0030828 // positive regulation of cGMP biosynthetic process // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0031284 // positive regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay', '0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005730 // nucleolus // inferred from direct assay', '0001750 // photoreceptor outer segment // inferred from electronic annotation /// 0001917 // photoreceptor inner segment // inferred from electronic annotation /// 0005578 // proteinaceous extracellular matrix // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from direct assay /// 0016020 // membrane // inferred from electronic annotation /// 0097381 // photoreceptor disc membrane // traceable author statement'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay', '0000979 // RNA polymerase II core promoter sequence-specific DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from mutant phenotype /// 0003700 // sequence-specific DNA binding transcription factor activity // inferred from direct assay /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0044212 // transcription regulatory region DNA binding // inferred from direct assay', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation /// 0046872 // metal ion binding // inferred from electronic annotation']}\n" ] } ], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "223b6300", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "a83387db", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:06:00.807298Z", "iopub.status.busy": "2025-03-25T06:06:00.807130Z", "iopub.status.idle": "2025-03-25T06:06:01.043347Z", "shell.execute_reply": "2025-03-25T06:06:01.042686Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of gene expression data after mapping: (21278, 41)\n", "First 10 gene symbols after mapping:\n", "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1',\n", " 'A4GALT', 'A4GNT', 'AA06'],\n", " dtype='object', name='Gene')\n" ] } ], "source": [ "# 1. Analyze the gene annotation data to identify the columns for probe IDs and gene symbols\n", "# From the preview, we can see that the column 'ID' contains the probe IDs (e.g., '1007_s_at')\n", "# The column 'Gene Symbol' contains the gene symbols (e.g., 'DDR1 /// MIR4640')\n", "\n", "# 2. Use the get_gene_mapping function to extract the mapping between probe IDs and gene symbols\n", "gene_mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n", "# This handles the many-to-many relationships between probes and genes\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping_df)\n", "\n", "# Print the shape of the resulting gene expression dataframe and preview the first few gene symbols\n", "print(f\"Shape of gene expression data after mapping: {gene_data.shape}\")\n", "print(\"First 10 gene symbols after mapping:\")\n", "print(gene_data.index[:10])\n" ] }, { "cell_type": "markdown", "id": "c0fd445f", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 8, "id": "4d610dcf", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:06:01.045188Z", "iopub.status.busy": "2025-03-25T06:06:01.045067Z", "iopub.status.idle": "2025-03-25T06:06:10.884653Z", "shell.execute_reply": "2025-03-25T06:06:10.883983Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized gene data saved to ../../output/preprocess/Pancreatic_Cancer/gene_data/GSE157494.csv\n", "Loaded clinical data from file with shape: (1, 41)\n", "Linked data shape: (41, 19846)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Shape after handling missing values: (41, 19846)\n", "For the feature 'Pancreatic_Cancer', the least common label is '0.0' with 13 occurrences. This represents 31.71% of the dataset.\n", "The distribution of the feature 'Pancreatic_Cancer' in this dataset is fine.\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Linked data saved to ../../output/preprocess/Pancreatic_Cancer/GSE157494.csv\n" ] } ], "source": [ "# 1. Normalize gene symbols in the gene expression data\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "\n", "# Save the normalized gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# Verify we have the clinical_data from earlier steps\n", "try:\n", " # Load the saved clinical data if it exists\n", " clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)\n", " print(f\"Loaded clinical data from file with shape: {clinical_df.shape}\")\n", "except:\n", " # Use the clinical data extracted in the previous steps\n", " print(f\"Using clinical data from previous steps with shape: {selected_clinical_df.shape}\")\n", " clinical_df = selected_clinical_df\n", "\n", "# 2. Link the clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", "# 3. Handle missing values in the linked data\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(f\"Shape after handling missing values: {linked_data.shape}\")\n", "\n", "# 4. Determine whether the trait and demographic features are severely biased\n", "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 5. Conduct quality check and save the cohort information\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=\"Dataset contains pancreatic cancer xenografted tumors and cell lines.\"\n", ")\n", "\n", "# 6. If the linked data is usable, save it as a CSV file\n", "if is_usable:\n", " # Create directory if it doesn't exist\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " # Save the data\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Data quality check failed. Linked data not saved.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }