# Path Configuration from tools.preprocess import * # Processing context trait = "Chronic_kidney_disease" cohort = "GSE104954" # Input paths in_trait_dir = "../DATA/GEO/Chronic_kidney_disease" in_cohort_dir = "../DATA/GEO/Chronic_kidney_disease/GSE104954" # Output paths out_data_file = "./output/preprocess/1/Chronic_kidney_disease/GSE104954.csv" out_gene_data_file = "./output/preprocess/1/Chronic_kidney_disease/gene_data/GSE104954.csv" out_clinical_data_file = "./output/preprocess/1/Chronic_kidney_disease/clinical_data/GSE104954.csv" json_path = "./output/preprocess/1/Chronic_kidney_disease/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if gene expression data is available. # From the background, this dataset uses Affymetrix microarrays for RNA, # indicating gene expression data is present. is_gene_available = True # 2.1 Data Availability # Matching the provided sample characteristics dictionary, we see: # Key=0 => tissue: all the same, not useful. # Key=1 => multiple kidney disease diagnoses vs. tumor nephrectomy (control). # This can serve as a binary trait for "Chronic_kidney_disease" vs. non-CKD. trait_row = 1 # diagnosis data is in row 1 age_row = None # age not found gender_row = None # gender not found # 2.2 Data Type Conversion # We choose 'binary' for the trait: 1 = Chronic Kidney Disease, 0 = non-CKD, None if unknown. def convert_trait(x: Any) -> Optional[int]: if not isinstance(x, str): return None # Extract the part after the colon val = x.split(":", 1)[-1].strip().lower() if val in ["", "nan"]: return None if val == "tumor nephrectomy": return 0 # likely control group # Otherwise, treat all other diagnoses as CKD return 1 # Since age and gender are unavailable, define pass-through functions returning None. def convert_age(x: Any) -> Optional[float]: return None def convert_gender(x: Any) -> Optional[int]: return None # 3. Initial filtering on dataset usability is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait_row is available) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview result print(preview_df(selected_clinical_df, n=5)) # Save the extracted clinical features selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The gene identifiers such as "10000_at", "10001_at", etc. indicate Affymetrix probe set IDs # rather than human gene symbols, so they need to be mapped to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. In the annotation DataFrame, the 'ID' column matches the probe identifiers in the gene expression data, # and the 'Symbol' column contains the gene symbols. # 2. Create a mapping DataFrame for probe-to-gene mapping. mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol") # 3. Apply this mapping to convert probe-level measurements to gene-level data. gene_data = apply_gene_mapping(gene_data, mapping_df) # Optionally, preview a small portion of the resulting gene expression DataFrame print(preview_df(gene_data, n=5)) # STEP7 # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library. linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and some demographic features are severely biased, and remove biased features. is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct quality check and save the cohort information. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data ) # 6. If the linked data is usable, save it as a CSV file to 'out_data_file'. if is_usable: unbiased_linked_data.to_csv(out_data_file)