# Path Configuration from tools.preprocess import * # Processing context trait = "Chronic_kidney_disease" cohort = "GSE127136" # Input paths in_trait_dir = "../DATA/GEO/Chronic_kidney_disease" in_cohort_dir = "../DATA/GEO/Chronic_kidney_disease/GSE127136" # Output paths out_data_file = "./output/preprocess/1/Chronic_kidney_disease/GSE127136.csv" out_gene_data_file = "./output/preprocess/1/Chronic_kidney_disease/gene_data/GSE127136.csv" out_clinical_data_file = "./output/preprocess/1/Chronic_kidney_disease/clinical_data/GSE127136.csv" json_path = "./output/preprocess/1/Chronic_kidney_disease/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Single-cell RNA-seq suggests gene expression data is available. # 2. Variable Availability and Data Type Conversion # From the sample characteristics dictionary, row 1 contains multiple disease states (IgAN, kidney cancer, normal). # We will treat "IgAN" as having the CKD trait = 1, and others (kidney cancer/normal) as 0. trait_row = 1 age_row = None gender_row = None def convert_trait(value: str): """ Convert disease state values to binary indicating CKD (IgAN) or not. """ parts = value.split(':', 1) val = parts[1].strip() if len(parts) > 1 else parts[0].strip() if val.lower() == 'igan': return 1 elif val.lower() in ['kidney cancer', 'normal']: return 0 else: return 0 # Since age and gender are not available, set their conversion functions to None convert_age = None convert_gender = None # 3. Save Metadata using initial filtering is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait data is available) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20])