# Path Configuration from tools.preprocess import * # Processing context trait = "Chronic_kidney_disease" cohort = "GSE180393" # Input paths in_trait_dir = "../DATA/GEO/Chronic_kidney_disease" in_cohort_dir = "../DATA/GEO/Chronic_kidney_disease/GSE180393" # Output paths out_data_file = "./output/preprocess/1/Chronic_kidney_disease/GSE180393.csv" out_gene_data_file = "./output/preprocess/1/Chronic_kidney_disease/gene_data/GSE180393.csv" out_clinical_data_file = "./output/preprocess/1/Chronic_kidney_disease/clinical_data/GSE180393.csv" json_path = "./output/preprocess/1/Chronic_kidney_disease/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Evaluate whether gene expression data is available is_gene_available = True # Based on microarray transcriptome data from the summary # 2. Determine availability of trait, age, and gender data # and define corresponding conversion functions # From the sample characteristics dictionary, row 0 provides multi-category info # about disease status. We will code "Living donor" or "unaffected" as 0 (control) # and all others as 1 (CKD). Rows for age/gender do not appear available. trait_row = 0 age_row = None gender_row = None def convert_trait(value: str): # Extract the part after the colon parts = value.split(":", 1) if len(parts) < 2: return None # Unknown format label = parts[1].strip().lower() # Living donor or unaffected if "living donor" in label or "unaffected" in label: return 0 else: return 1 def convert_age(value: str): # No age data available return None def convert_gender(value: str): # No gender data available return None # 3. Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. If trait data is available, extract and preview clinical features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save the resulting clinical dataframe preview = preview_df(selected_clinical_df, n=5) print("Preview of selected clinical features:", preview) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The listed identifiers (e.g., "100009613_at", "10000_at", etc.) are typical Affymetrix probe set IDs, # not standard human gene symbols. Therefore, they require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6: Gene Identifier Mapping # Observing the preview from step 5, the annotation DataFrame has columns 'ID' and 'ENTREZ_GENE_ID', # but 'ENTREZ_GENE_ID' is purely numeric, which leads to an empty mapping when the library's # apply_gene_mapping() tries to parse it as a “human gene symbol.” We will therefore implement # a custom mapping function that distributes expression values to numeric Entrez IDs without # filtering them out. def apply_entrez_id_mapping(expression_df: pd.DataFrame, annotation_df: pd.DataFrame) -> pd.DataFrame: """ Convert probe-level data to gene-level data using numeric Entrez IDs. If a probe maps to multiple Entrez IDs (split by '///'), each gene gets an equal split. Then we sum contributions from multiple probes associated with the same gene ID. """ # Keep only the columns we need, renaming ENTREZ_GENE_ID to 'Gene' mapping_df = annotation_df[['ID', 'ENTREZ_GENE_ID']].copy() mapping_df.columns = ['ID', 'Gene'] mapping_df.dropna(subset=['Gene'], inplace=True) # Filter to probes that exist in expression_df mapping_df = mapping_df[mapping_df['ID'].isin(expression_df.index)].copy() # A single probe might have multiple Entrez IDs separated by '///' def split_entrez_ids(gene_str): if '///' in gene_str: return [x.strip() for x in gene_str.split('///') if x.strip()] else: return [gene_str.strip()] mapping_df['Gene'] = mapping_df['Gene'].apply(split_entrez_ids) # Remove rows with no valid gene IDs mapping_df = mapping_df[mapping_df['Gene'].map(len) > 0] # Count how many genes per probe mapping_df['num_genes'] = mapping_df['Gene'].map(len) # Explode so each gene occupies its own row mapping_df.set_index('ID', inplace=True) mapping_df = mapping_df.explode('Gene') # Join expression data merged_df = mapping_df.join(expression_df, how='inner') expr_cols = [c for c in merged_df.columns if c not in ['Gene', 'num_genes']] # Divide the probe expression among mapped genes merged_df[expr_cols] = merged_df[expr_cols].div(merged_df['num_genes'], axis=0) # Sum expressions for each gene gene_df = merged_df.groupby('Gene')[expr_cols].sum() return gene_df # 1 & 2. Identify columns for probe ID and gene ID, then map gene_data = apply_entrez_id_mapping(gene_data, gene_annotation) # 3. Print shape after mapping to confirm we have gene-level data print("Gene expression data shape after mapping:", gene_data.shape) # STEP7 # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library. linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and some demographic features are severely biased, and remove biased features. is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct quality check and save the cohort information. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data ) # 6. If the linked data is usable, save it as a CSV file to 'out_data_file'. if is_usable: unbiased_linked_data.to_csv(out_data_file)