# Path Configuration from tools.preprocess import * # Processing context trait = "Chronic_kidney_disease" cohort = "GSE45980" # Input paths in_trait_dir = "../DATA/GEO/Chronic_kidney_disease" in_cohort_dir = "../DATA/GEO/Chronic_kidney_disease/GSE45980" # Output paths out_data_file = "./output/preprocess/1/Chronic_kidney_disease/GSE45980.csv" out_gene_data_file = "./output/preprocess/1/Chronic_kidney_disease/gene_data/GSE45980.csv" out_clinical_data_file = "./output/preprocess/1/Chronic_kidney_disease/clinical_data/GSE45980.csv" json_path = "./output/preprocess/1/Chronic_kidney_disease/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Attempt to identify the paths to the SOFT file and the matrix file try: soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) except AssertionError: print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") soft_file, matrix_file = None, None if soft_file is None or matrix_file is None: print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") else: # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine if gene expression data is available # From the background info, mRNA expression profiling was performed, so we set: is_gene_available = True # Step 2: Variable Availability and Data Type Conversion # 2.1 The dataset trait is chronic kidney disease (CKD). However, all subjects are CKD patients, # so there's no variation (everyone has the trait). Hence, it's effectively not available for our analysis: trait_row = None # For age, row 1 contains varied age values "age (yrs): ". age_row = 1 # For gender, row 0 contains "gender: male" or "gender: female", so it is available and non-constant. gender_row = 0 # 2.2 Define conversion functions for each variable. def convert_trait(value: str) -> int: # The trait is not actually variable in this dataset, so we won't use this. # But we define a no-op function for completeness. return None def convert_age(value: str) -> float: try: # Example: "age (yrs): 72" # Split at the first colon and parse the right side right_side = value.split(':', 1)[1].strip() return float(right_side) except: return None def convert_gender(value: str) -> int: try: # Example: "gender: male" right_side = value.split(':', 1)[1].strip().lower() if right_side == 'male': return 1 elif right_side == 'female': return 0 else: return None except: return None # 3. Save Metadata (initial filtering) # Trait availability depends on whether trait_row is None. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Only proceed if the trait is available, i.e., trait_row is not None. if trait_row is not None: # Suppose we have a DataFrame called clinical_data already loaded. # (In practice, it would be passed from previous steps.) selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # Attempt to read gene expression data; if the library function yields an empty DataFrame, # try re-reading without ignoring lines that start with '!' (because sometimes GEO data may # place actual expression rows under lines that begin with '!'). gene_data = get_genetic_data(matrix_file) if gene_data.empty: print("[WARNING] The gene_data is empty. Attempting alternative loading without treating '!' as comments.") import gzip # Locate the marker line first skip_rows = 0 with gzip.open(matrix_file, 'rt') as file: for i, line in enumerate(file): if "!series_matrix_table_begin" in line: skip_rows = i + 1 break # Read the data again, this time not treating '!' as comment gene_data = pd.read_csv( matrix_file, compression="gzip", skiprows=skip_rows, delimiter="\t", on_bad_lines="skip" ) gene_data = gene_data.rename(columns={"ID_REF": "ID"}).astype({"ID": "str"}) gene_data.set_index("ID", inplace=True) # Print the first 20 row IDs to confirm data structure print(gene_data.index[:20]) # Based on the probe-like format of the identifiers (e.g., 'A_23_P100001'), # they do not appear to be standard human gene symbols. They likely require mapping. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide that the column "ID" in the annotation dataframe corresponds to the probe IDs, # and "GENE_SYMBOL" corresponds to the gene symbol. mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL") # 2. Convert probe-level data to gene expression data. gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # Show a quick preview of the resulting gene-level data. print("Mapped gene_data shape:", gene_data.shape) print(gene_data.head()) import os import pandas as pd # STEP7: Data Normalization and Linking # 1) Normalize the gene symbols in the previously obtained gene_data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2) Load clinical data only if it exists and is non-empty if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0: # Read the file clinical_temp = pd.read_csv(out_clinical_data_file) # Adjust row index to label the trait, age, and gender properly if clinical_temp.shape[0] == 3: clinical_temp.index = [trait, "Age", "Gender"] elif clinical_temp.shape[0] == 2: clinical_temp.index = [trait, "Age"] elif clinical_temp.shape[0] == 1: clinical_temp.index = [trait] # 2) Link the clinical and normalized genetic data linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data) # 3) Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4) Check for severe bias in the trait; remove biased demographic features if present trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5) Final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=f"Final check on {cohort} with {trait}." ) # 6) If the linked data is usable, save it if is_usable: linked_data.to_csv(out_data_file) else: # If no valid clinical data file is found, finalize metadata indicating trait unavailability is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Force a fallback so that it's flagged as unusable df=pd.DataFrame(), note=f"No trait data found for {cohort}, final metadata recorded." ) # Per instructions, do not save a final linked data file when trait data is absent.