# Path Configuration from tools.preprocess import * # Processing context trait = "Chronic_kidney_disease" cohort = "GSE60861" # Input paths in_trait_dir = "../DATA/GEO/Chronic_kidney_disease" in_cohort_dir = "../DATA/GEO/Chronic_kidney_disease/GSE60861" # Output paths out_data_file = "./output/preprocess/1/Chronic_kidney_disease/GSE60861.csv" out_gene_data_file = "./output/preprocess/1/Chronic_kidney_disease/gene_data/GSE60861.csv" out_clinical_data_file = "./output/preprocess/1/Chronic_kidney_disease/clinical_data/GSE60861.csv" json_path = "./output/preprocess/1/Chronic_kidney_disease/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Attempt to identify the paths to the SOFT file and the matrix file try: soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) except AssertionError: print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") soft_file, matrix_file = None, None if soft_file is None or matrix_file is None: print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") else: # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if the dataset likely contains gene expression (mRNA) data # From the background info, the title explicitly states analysis of mRNA-expression, # so we set is_gene_available = True. is_gene_available = True # 2. Determine availability and parsing of the variables 'trait', 'age', and 'gender'. # 2.1 Data Availability # The dataset is entirely about chronic kidney disease (CKD) subdivided by specific nephropathies. # Hence CKD is constant across all samples and offers no variation for associating gene expression. # Therefore, "trait_row" should be None (treated as not available). trait_row = None # For the 'age' variable, key=1 in the sample characteristics has well-defined numeric values # with multiple distinct entries. Thus we set age_row=1. age_row = 1 # For the 'gender' variable, key=0 has entries "gender: male" and "gender: female" (and one mentioning "tissue"), # which still shows at least 2 distinct gender values. Hence gender_row=0. gender_row = 0 # 2.2 Data Type Conversion # - Trait: not available (trait_row=None), but we still define the function. # - Age: continuous. # - Gender: binary (female->0, male->1). def convert_trait(value: str) -> int: # Not actually used since trait_row is None, but defined for completeness. # We consider it unavailable, so return None to skip usage. return None def convert_age(value: str) -> float: # Extract the part after the colon and convert to float # Unknown or malformed entries become None parts = value.split(":") if len(parts) < 2: return None try: return float(parts[-1].strip()) except ValueError: return None def convert_gender(value: str) -> int: # Extract the part after the colon parts = value.split(":") if len(parts) < 2: return None val = parts[-1].strip().lower() if val == "male": return 1 elif val == "female": return 0 else: return None # 3. Save metadata with initial filtering. # trait_row is None => is_trait_available = False # gene expression is likely => is_gene_available = True # Perform the initial validation. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # We only extract clinical features if trait_row is not None. Here trait_row = None (no variation), # so we skip the extraction step. # (No further action regarding clinical data extraction.) # STEP3 # Attempt to read gene expression data; if the library function yields an empty DataFrame, # try re-reading without ignoring lines that start with '!' (because sometimes GEO data may # place actual expression rows under lines that begin with '!'). gene_data = get_genetic_data(matrix_file) if gene_data.empty: print("[WARNING] The gene_data is empty. Attempting alternative loading without treating '!' as comments.") import gzip # Locate the marker line first skip_rows = 0 with gzip.open(matrix_file, 'rt') as file: for i, line in enumerate(file): if "!series_matrix_table_begin" in line: skip_rows = i + 1 break # Read the data again, this time not treating '!' as comment gene_data = pd.read_csv( matrix_file, compression="gzip", skiprows=skip_rows, delimiter="\t", on_bad_lines="skip" ) gene_data = gene_data.rename(columns={"ID_REF": "ID"}).astype({"ID": "str"}) gene_data.set_index("ID", inplace=True) # Print the first 20 row IDs to confirm data structure print(gene_data.index[:20]) # Based on their format (e.g., "A_23_P100001"), these identifiers appear to be probe IDs from a microarray platform, # rather than standard human gene symbols. Therefore, they need to be mapped to gene symbols. print("These identifiers are microarray probe IDs, not standard human gene symbols.") print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6: Gene Identifier Mapping # 1 & 2. Decide which columns in the gene annotation dataframe correspond to the probe IDs and gene symbols. # From inspection, "ID" matches the probe IDs (e.g., "A_23_P100001") in our expression data, # and "GENE_SYMBOL" contains the gene symbols. mapping_df = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL') # 3. Convert probe-level measurements to gene expression data by applying the mapping: gene_data = apply_gene_mapping(gene_data, mapping_df) import os import pandas as pd # STEP7: Data Normalization and Linking # 1) Normalize the gene symbols in the previously obtained gene_data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2) Load clinical data only if it exists and is non-empty if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0: # Read the file clinical_temp = pd.read_csv(out_clinical_data_file) # Adjust row index to label the trait, age, and gender properly if clinical_temp.shape[0] == 3: clinical_temp.index = [trait, "Age", "Gender"] elif clinical_temp.shape[0] == 2: clinical_temp.index = [trait, "Age"] elif clinical_temp.shape[0] == 1: clinical_temp.index = [trait] # 2) Link the clinical and normalized genetic data linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data) # 3) Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4) Check for severe bias in the trait; remove biased demographic features if present trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5) Final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=f"Final check on {cohort} with {trait}." ) # 6) If the linked data is usable, save it if is_usable: linked_data.to_csv(out_data_file) else: # If no valid clinical data file is found, finalize metadata indicating trait unavailability is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Force a fallback so that it's flagged as unusable df=pd.DataFrame(), note=f"No trait data found for {cohort}, final metadata recorded." ) # Per instructions, do not save a final linked data file when trait data is absent.