# Path Configuration from tools.preprocess import * # Processing context trait = "Chronic_kidney_disease" cohort = "GSE66494" # Input paths in_trait_dir = "../DATA/GEO/Chronic_kidney_disease" in_cohort_dir = "../DATA/GEO/Chronic_kidney_disease/GSE66494" # Output paths out_data_file = "./output/preprocess/1/Chronic_kidney_disease/GSE66494.csv" out_gene_data_file = "./output/preprocess/1/Chronic_kidney_disease/gene_data/GSE66494.csv" out_clinical_data_file = "./output/preprocess/1/Chronic_kidney_disease/clinical_data/GSE66494.csv" json_path = "./output/preprocess/1/Chronic_kidney_disease/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Attempt to identify the paths to the SOFT file and the matrix file try: soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) except AssertionError: print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") soft_file, matrix_file = None, None if soft_file is None or matrix_file is None: print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") else: # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1. Determine Gene Expression Data Availability is_gene_available = True # From the background info, it is indeed gene expression data. # Step 2. Identify rows for trait, age, and gender and define conversion functions # After examining the sample characteristics dictionary, we see mention of # "disease status: chronic kidney disease (CKD)" in row 4, along with nan, # which strongly suggests a binary classification (CKD or not CKD). # # No definite mention of age or gender is found, so those are unavailable. trait_row = 4 age_row = None gender_row = None import pandas as pd # Define conversion for the trait (binary: normal=0, CKD=1, unknown=0 if nan) def convert_trait(value): # Handle missing or NaN values if pd.isna(value): return 0 # Heuristic: treat missing or nan as non-CKD (0) value_str = str(value) parts = value_str.split(':', 1) content = parts[1].strip() if len(parts) > 1 else parts[0].strip() content_lower = content.lower() if 'chronic kidney disease' in content_lower: return 1 elif 'normal kidney' in content_lower: return 0 else: # Heuristic: treat others as non-CKD (0) return 0 # No data for age or gender, so they always return None def convert_age(value): return None def convert_gender(value): return None # Step 3. Perform initial filtering and save metadata is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4. If trait data is available, extract clinical features if is_trait_available: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical data preview_output = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview_output) # Save the clinical data to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # Attempt to read gene expression data; if the library function yields an empty DataFrame, # try re-reading without ignoring lines that start with '!' (because sometimes GEO data may # place actual expression rows under lines that begin with '!'). gene_data = get_genetic_data(matrix_file) if gene_data.empty: print("[WARNING] The gene_data is empty. Attempting alternative loading without treating '!' as comments.") import gzip # Locate the marker line first skip_rows = 0 with gzip.open(matrix_file, 'rt') as file: for i, line in enumerate(file): if "!series_matrix_table_begin" in line: skip_rows = i + 1 break # Read the data again, this time not treating '!' as comment gene_data = pd.read_csv( matrix_file, compression="gzip", skiprows=skip_rows, delimiter="\t", on_bad_lines="skip" ) gene_data = gene_data.rename(columns={"ID_REF": "ID"}).astype({"ID": "str"}) gene_data.set_index("ID", inplace=True) # Print the first 20 row IDs to confirm data structure print(gene_data.index[:20]) print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the column with the probe identifiers and the column with the gene symbols. # From the annotation preview, the "ID" column matches the gene expression data row IDs ("A_23_P..."), # and the "GENE_SYMBOL" column holds the gene symbols. probe_id_col = "ID" gene_symbol_col = "GENE_SYMBOL" # 2. Get the gene mapping dataframe by extracting these two columns from the gene annotation dataframe. mapping_df = get_gene_mapping( annotation=gene_annotation, prob_col=probe_id_col, gene_col=gene_symbol_col ) # 3. Convert probe-level measurement to gene expression data gene_data = apply_gene_mapping( expression_df=gene_data, mapping_df=mapping_df ) import os import pandas as pd # STEP7: Data Normalization and Linking # 1) Normalize the gene symbols in the previously obtained gene_data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2) Load clinical data only if it exists and is non-empty if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0: # Read the file clinical_temp = pd.read_csv(out_clinical_data_file) # Adjust row index to label the trait, age, and gender properly if clinical_temp.shape[0] == 3: clinical_temp.index = [trait, "Age", "Gender"] elif clinical_temp.shape[0] == 2: clinical_temp.index = [trait, "Age"] elif clinical_temp.shape[0] == 1: clinical_temp.index = [trait] # 2) Link the clinical and normalized genetic data linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data) # 3) Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4) Check for severe bias in the trait; remove biased demographic features if present trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5) Final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=f"Final check on {cohort} with {trait}." ) # 6) If the linked data is usable, save it if is_usable: linked_data.to_csv(out_data_file) else: # If no valid clinical data file is found, finalize metadata indicating trait unavailability is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Force a fallback so that it's flagged as unusable df=pd.DataFrame(), note=f"No trait data found for {cohort}, final metadata recorded." ) # Per instructions, do not save a final linked data file when trait data is absent.