# Path Configuration from tools.preprocess import * # Processing context trait = "Chronic_kidney_disease" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/1/Chronic_kidney_disease/TCGA.csv" out_gene_data_file = "./output/preprocess/1/Chronic_kidney_disease/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/1/Chronic_kidney_disease/clinical_data/TCGA.csv" json_path = "./output/preprocess/1/Chronic_kidney_disease/cohort_info.json" import os import pandas as pd # 1. Identify a suitable subdirectory for "Chronic_kidney_disease" subdirs = [ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)' ] # Filter for possible kidney-related subdirectories kidney_subdirs = [s for s in subdirs if 'kidney' in s.lower()] # If none found, skip. Otherwise, pick the most specific one for this trait; here we choose clear cell carcinoma if not kidney_subdirs: print("No matching subdirectory found for Chronic_kidney_disease. Skipping this trait.") else: chosen_subdir = 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)' # chosen after manual inspection # 2. Identify file paths for clinical and genetic data cohort_dir = os.path.join(tcga_root_dir, chosen_subdir) clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load data into Pandas DataFrames clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print the column names of the clinical data print("Clinical Data Columns:", clinical_df.columns.tolist()) candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] age_preview = clinical_df[candidate_age_cols].head(5).to_dict(orient='list') if candidate_age_cols else {} gender_preview = clinical_df[candidate_gender_cols].head(5).to_dict(orient='list') if candidate_gender_cols else {} age_preview, gender_preview # In this code snippet, we assume that the columns "age_at_diagnosis" (for age) # and "gender" (for gender) have been verified to contain valid and sufficiently complete data. # If no suitable column was found for either attribute, we would set it to None. age_col = "age_at_diagnosis" gender_col = "gender" print("Chosen age_col:", age_col) print("Chosen gender_col:", gender_col) # 1) Extract and standardize clinical features age_col = "age_at_initial_pathologic_diagnosis" # Updated valid age column gender_col = "gender" # Remains valid selected_clinical_df = tcga_select_clinical_features( clinical_df=clinical_df, trait=trait, age_col=age_col, gender_col=gender_col ) # 2) Normalize gene symbols and save normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) normalized_gene_df.to_csv(out_gene_data_file) # 3) Link the clinical and genetic data linked_data = selected_clinical_df.join(normalized_gene_df, how='inner') # 4) Handle missing values processed_linked_data = handle_missing_values(linked_data, trait) # 5) Determine whether the trait/demographic features are biased is_trait_biased, final_data = judge_and_remove_biased_features(processed_linked_data, trait) # 6) Conduct final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=final_data, note="Preprocessing complete for Chronic_kidney_disease (TCGA)." ) # 7) If usable, save the final linked data and clinical subset if is_usable: final_data.to_csv(out_data_file) clinical_cols = [c for c in [trait, "Age", "Gender"] if c in final_data.columns] if clinical_cols: final_data[clinical_cols].to_csv(out_clinical_data_file)