{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "c9c24e17", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Psoriatic_Arthritis\"\n", "cohort = \"GSE142049\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Psoriatic_Arthritis\"\n", "in_cohort_dir = \"../../input/GEO/Psoriatic_Arthritis/GSE142049\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Psoriatic_Arthritis/GSE142049.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Psoriatic_Arthritis/gene_data/GSE142049.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Psoriatic_Arthritis/clinical_data/GSE142049.csv\"\n", "json_path = \"../../output/preprocess/Psoriatic_Arthritis/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "1783c18b", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "ca0a1099", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "ac8d5a01", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "47517969", "metadata": {}, "outputs": [], "source": [ "# Analyze the dataset to determine availability of gene expression and clinical data\n", "\n", "# 1. Gene Expression Data\n", "# Based on the background information, this dataset contains transcriptional data (RNA)\n", "# from CD19+ B cells, which indicates it contains gene expression data\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Identify rows in the sample characteristics dictionary for trait, age, and gender\n", "\n", "# For the trait (Psoriatic Arthritis), we can find it in the working_diagnosis field (key 6)\n", "trait_row = 6\n", "\n", "# Age information is available in key 2\n", "age_row = 2\n", "\n", "# Gender information is available in key 1\n", "gender_row = 1\n", "\n", "# 2.2 Create conversion functions for each variable\n", "\n", "def convert_trait(value):\n", " \"\"\"\n", " Convert the working_diagnosis value to a binary indicator for Psoriatic Arthritis.\n", " 1 if the patient has Psoriatic Arthritis, 0 otherwise.\n", " \"\"\"\n", " if isinstance(value, str) and \":\" in value:\n", " diagnosis = value.split(\":\", 1)[1].strip()\n", " if diagnosis == \"Psoriatic Arthritis\":\n", " return 1\n", " else:\n", " return 0\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"\n", " Convert age string to a numerical value.\n", " \"\"\"\n", " if isinstance(value, str) and \":\" in value:\n", " age_str = value.split(\":\", 1)[1].strip()\n", " try:\n", " return int(age_str)\n", " except ValueError:\n", " return None\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"\n", " Convert gender string to binary: 0 for female, 1 for male.\n", " \"\"\"\n", " if isinstance(value, str) and \":\" in value:\n", " gender = value.split(\":\", 1)[1].strip()\n", " if gender.upper() == \"F\":\n", " return 0\n", " elif gender.upper() == \"M\":\n", " return 1\n", " return None\n", "\n", "# 3. Save Metadata - Initial Filtering\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Extract clinical features using the library function\n", " clinical_features = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical features\n", " preview = preview_df(clinical_features)\n", " print(\"Preview of extracted clinical features:\")\n", " print(preview)\n", " \n", " # Save the clinical features to a CSV file\n", " clinical_features.to_csv(out_clinical_data_file)\n", " print(f\"Clinical features saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "4dea5755", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "3d6ae7d7", "metadata": {}, "outputs": [], "source": [ "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "9b0fccbf", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "fbc5de3a", "metadata": {}, "outputs": [], "source": [ "# Looking at the gene identifiers, I can see they are ILMN_ prefixed identifiers.\n", "# These are Illumina BeadArray probe IDs, not standard human gene symbols.\n", "# Illumina IDs like \"ILMN_1343291\" need to be mapped to human gene symbols.\n", "# These IDs are specific to Illumina microarray platforms and require mapping.\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "035e8f1b", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "b827a264", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "a47beafc", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "fdc931b3", "metadata": {}, "outputs": [], "source": [ "# 1. Identify the relevant columns from the gene annotation dataframe\n", "# The 'ID' column contains probe IDs (e.g., ILMN_...) which match the gene_data index\n", "# The 'Symbol' column contains the human gene symbols we need to map to\n", "\n", "# 2. Get gene mapping dataframe by extracting the needed columns\n", "mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n", "print(\"Gene mapping preview:\")\n", "print(preview_df(mapping_data))\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression data\n", "gene_data = apply_gene_mapping(gene_data, mapping_data)\n", "print(\"After mapping to gene symbols, gene data shape:\", gene_data.shape)\n", "print(\"First 10 gene symbols after mapping:\")\n", "print(gene_data.index[:10])\n", "\n", "# Store the gene data to a CSV file\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "0f063d68", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "35687c8f", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene data saved to {out_gene_data_file}\")\n", "\n", "# Re-extract clinical features since we need it for linking\n", "selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", ")\n", "\n", "# 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.\n", "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n", "print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n", "\n", "# 3. Handle missing values in the linked data\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n", "\n", "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n", "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 5. Conduct quality check and save the cohort information.\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=\"Dataset contains gene expression from endothelial cells derived from circulating progenitors of RA patients\"\n", ")\n", "\n", "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n", "if is_usable:\n", " print(f\"Data is usable. Saving to {out_data_file}\")\n", " unbiased_linked_data.to_csv(out_data_file)\n", "else:\n", " print(\"Data is not usable. Not saving linked data file.\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }