{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "d8bc88bd", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Height\"\n", "cohort = \"GSE97475\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Height\"\n", "in_cohort_dir = \"../../input/GEO/Height/GSE97475\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Height/GSE97475.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Height/gene_data/GSE97475.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Height/clinical_data/GSE97475.csv\"\n", "json_path = \"../../output/preprocess/Height/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "8b3d32da", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "74cb49cd", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "5a025d18", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "18d167cc", "metadata": {}, "outputs": [], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the series title and summary, this appears to be a gene expression study of healthy hepatitis B vaccine recipients.\n", "# The summary mentions \"transcriptomic\" data collection, which suggests gene expression data is available.\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "\n", "# Height (trait)\n", "# Looking at 'subjects.demographics.height: NA' - all values are NA, so height data is not available\n", "trait_row = None # Setting to None since all values appear to be NA\n", "\n", "# Age Data\n", "# Key 81 contains age information with multiple unique values\n", "age_row = 81\n", "\n", "# Gender Data\n", "# Key 118 contains gender information with two values: Male and Female\n", "gender_row = 118\n", "\n", "# 2.2 Data Type Conversion\n", "\n", "def convert_trait(value):\n", " \"\"\"Convert height data to a float value in cm.\"\"\"\n", " if not value or value == 'NA':\n", " return None\n", " # Extract the value after the colon if present\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " # Try to convert to float, assuming height is in cm\n", " try:\n", " return float(value)\n", " except ValueError:\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age data to integer.\"\"\"\n", " if not value or value == 'NA':\n", " return None\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " try:\n", " return int(value)\n", " except ValueError:\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender data to binary (0 for Female, 1 for Male).\"\"\"\n", " if not value or value == 'NA':\n", " return None\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " if value.lower() == 'female':\n", " return 0\n", " elif value.lower() == 'male':\n", " return 1\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine trait availability based on whether trait_row is None\n", "is_trait_available = trait_row is not None\n", "\n", "# Initial filtering on usability and save metadata\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# Only proceed if trait_row is not None and the clinical data file exists\n", "import os\n", "\n", "if trait_row is not None:\n", " clinical_data_path = f\"{in_cohort_dir}/clinical_data.csv\"\n", " if os.path.exists(clinical_data_path):\n", " # Load the clinical data\n", " clinical_data = pd.read_csv(clinical_data_path)\n", " \n", " # Extract clinical features using the library function\n", " selected_clinical = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the output\n", " preview = preview_df(selected_clinical)\n", " print(\"Preview of selected clinical features:\")\n", " print(preview)\n", " \n", " # Save the selected clinical features\n", " selected_clinical.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical features saved to {out_clinical_data_file}\")\n", " else:\n", " print(f\"Clinical data file not found at {clinical_data_path}\")\n", " print(\"Skipping clinical feature extraction.\")\n", "else:\n", " print(f\"Trait data ({trait}) is not available in this dataset.\")\n", " print(\"Skipping clinical feature extraction.\")\n" ] }, { "cell_type": "markdown", "id": "6d60c63c", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "110de7b4", "metadata": {}, "outputs": [], "source": [ "# 1. Get the file paths for the SOFT file and matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. First, let's examine the structure of the matrix file to understand its format\n", "import gzip\n", "\n", "# Peek at the first few lines of the file to understand its structure\n", "with gzip.open(matrix_file, 'rt') as file:\n", " # Read first 100 lines to find the header structure\n", " for i, line in enumerate(file):\n", " if '!series_matrix_table_begin' in line:\n", " print(f\"Found data marker at line {i}\")\n", " # Read the next line which should be the header\n", " header_line = next(file)\n", " print(f\"Header line: {header_line.strip()}\")\n", " # And the first data line\n", " first_data_line = next(file)\n", " print(f\"First data line: {first_data_line.strip()}\")\n", " break\n", " if i > 100: # Limit search to first 100 lines\n", " print(\"Matrix table marker not found in first 100 lines\")\n", " break\n", "\n", "# 3. Now try to get the genetic data with better error handling\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(gene_data.index[:20])\n", "except KeyError as e:\n", " print(f\"KeyError: {e}\")\n", " \n", " # Alternative approach: manually extract the data\n", " print(\"\\nTrying alternative approach to read the gene data:\")\n", " with gzip.open(matrix_file, 'rt') as file:\n", " # Find the start of the data\n", " for line in file:\n", " if '!series_matrix_table_begin' in line:\n", " break\n", " \n", " # Read the headers and data\n", " import pandas as pd\n", " df = pd.read_csv(file, sep='\\t', index_col=0)\n", " print(f\"Column names: {df.columns[:5]}\")\n", " print(f\"First 20 row IDs: {df.index[:20]}\")\n", " gene_data = df\n" ] }, { "cell_type": "markdown", "id": "4cce52d5", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "ada39933", "metadata": {}, "outputs": [], "source": [ "# Let's analyze the gene identifiers\n", "from typing import List\n", "\n", "def is_human_gene_symbol(gene_ids: List[str]) -> bool:\n", " \"\"\"\n", " Determine if a list of identifiers are human gene symbols.\n", " \n", " Human gene symbols are typically:\n", " - Short (usually 1-8 characters)\n", " - Uppercase letters\n", " - May contain numbers, usually at the end\n", " - Sometimes include hyphens\n", " \n", " Returns True if identifiers appear to be human gene symbols.\n", " \"\"\"\n", " # Check a sample of genes that are clearly human gene symbols\n", " known_human_genes = {'A1BG', 'AAAS', 'AACS', 'AAMP', 'AARS'}\n", " \n", " # Count how many match our known set\n", " matches = sum(1 for gene in gene_ids if gene in known_human_genes)\n", " \n", " # If we have multiple matches to known gene symbols, these are likely human gene symbols\n", " if matches >= 3:\n", " return True\n", " \n", " return False\n", "\n", "# Check the sample gene IDs shown in the output\n", "sample_genes = ['A1BG', 'A26C3', 'A2LD1', 'A4GNT', 'AAAS', 'AACS', 'AACSL', 'AADACL1',\n", " 'AADAT', 'AAGAB', 'AAK1', 'AAMP', 'AARS', 'AARS2', 'AARSD1', 'AASDH',\n", " 'AASDHPPT', 'AASS', 'AATF', 'AATK']\n", "\n", "requires_gene_mapping = not is_human_gene_symbol(sample_genes)\n", "print(f\"requires_gene_mapping = {requires_gene_mapping}\")\n" ] }, { "cell_type": "markdown", "id": "ce3c3202", "metadata": {}, "source": [ "### Step 5: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "8cf942a1", "metadata": {}, "outputs": [], "source": [ "# 1. Let's load the gene expression data\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# Normalize gene symbols in the gene expression data\n", "# The gene_data object from Step 3 already contains our gene expression data\n", "# Let's first load it again to make sure we have the correct data\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# Normalize gene symbols using the NCBI Gene database information\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", "\n", "# Save the normalized gene data to the output file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Attempt to link clinical and genetic data\n", "# In Step 2, we determined that Height data is not available in this dataset (trait_row = None)\n", "# Therefore, we need to indicate that trait data is not available\n", "\n", "# Create a minimal clinical dataframe with the trait column (containing NaNs)\n", "sample_ids = gene_data.columns\n", "# Create a DataFrame with sample IDs and a placeholder Height column\n", "minimal_clinical_df = pd.DataFrame(index=sample_ids)\n", "minimal_clinical_df[trait] = np.nan # Add the trait column with NaN values\n", "minimal_clinical_df.index.name = 'Sample'\n", "\n", "# Save this minimal clinical data for reference\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "minimal_clinical_df.to_csv(out_clinical_data_file)\n", "print(f\"Minimal clinical data with placeholder {trait} column saved to {out_clinical_data_file}\")\n", "\n", "# Create a linked dataset \n", "linked_data = pd.concat([minimal_clinical_df, normalized_gene_data.T], axis=1)\n", "linked_data.index.name = 'Sample'\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", "# 5. Validate and save cohort information\n", "# trait_row was None in Step 2, so we know Height data is not available\n", "is_gene_available = len(normalized_gene_data) > 0\n", "is_trait_available = False # Height data is not available\n", "\n", "note = \"Dataset contains gene expression data but no Height measurements. This dataset is not usable for studying Height associations.\"\n", "\n", "# For datasets without trait data, set is_biased to False\n", "# This indicates the dataset is not usable due to missing trait data, not due to bias\n", "is_biased = False\n", "\n", "# Final validation\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=is_gene_available, \n", " is_trait_available=is_trait_available, \n", " is_biased=is_biased, # Explicitly set to False instead of None\n", " df=linked_data,\n", " note=note\n", ")\n", "\n", "# Since there is no trait data, the dataset is not usable for our association study\n", "print(\"Dataset does not contain Height data and cannot be used for association studies.\")\n" ] }, { "cell_type": "markdown", "id": "6b286368", "metadata": {}, "source": [ "### Step 6: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "97bcc2f7", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import os\n", "\n", "# 1. Let's load the gene expression data\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# Extract gene expression data\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# Normalize gene symbols using the NCBI Gene database information\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", "\n", "# Save the normalized gene data to the output file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Link clinical and genetic data\n", "# In Step 2, we determined that Height data is not available in this dataset (trait_row = None)\n", "# Create a minimal clinical dataframe with the trait column (containing NaNs)\n", "sample_ids = normalized_gene_data.columns\n", "minimal_clinical_df = pd.DataFrame(index=sample_ids)\n", "minimal_clinical_df[trait] = np.nan # Add the trait column with NaN values\n", "\n", "# If we have age and gender data from Step 2, add those columns\n", "if age_row is not None:\n", " minimal_clinical_df['Age'] = get_feature_data(clinical_data, age_row, 'Age', convert_age).iloc[0]\n", "\n", "if gender_row is not None:\n", " minimal_clinical_df['Gender'] = get_feature_data(clinical_data, gender_row, 'Gender', convert_gender).iloc[0]\n", "\n", "minimal_clinical_df.index.name = 'Sample'\n", "\n", "# Save this minimal clinical data for reference\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "minimal_clinical_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# Create a linked dataset \n", "linked_data = pd.concat([minimal_clinical_df, normalized_gene_data.T], axis=1)\n", "linked_data.index.name = 'Sample'\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", "# We would normally handle missing values here, but since all trait values are missing,\n", "# the dataset will be empty after removing samples with missing trait values\n", "# Therefore, we'll skip that step\n", "\n", "# 4 & 5. Validate and save cohort information\n", "# Since trait_row was None in Step 2, we know Height data is not available\n", "is_gene_available = len(normalized_gene_data) > 0\n", "is_trait_available = False # Height data is not available\n", "\n", "note = \"Dataset contains gene expression data but no Height measurements. This dataset is not usable for studying Height associations.\"\n", "\n", "# For datasets without trait data, we set is_biased to False\n", "# This indicates the dataset is not usable due to missing trait data, not due to bias\n", "is_biased = False\n", "\n", "# Final validation\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=is_gene_available, \n", " is_trait_available=is_trait_available, \n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=note\n", ")\n", "\n", "# 6. Since there is no trait data, the dataset is not usable for our association study\n", "# So we should not save it to out_data_file\n", "print(f\"Dataset usability: {is_usable}\")\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Dataset does not contain Height data and cannot be used for association studies.\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }