{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "d2bcad28", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:59:16.492919Z", "iopub.status.busy": "2025-03-25T07:59:16.492810Z", "iopub.status.idle": "2025-03-25T07:59:16.661069Z", "shell.execute_reply": "2025-03-25T07:59:16.660731Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Mesothelioma\"\n", "cohort = \"GSE64738\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Mesothelioma\"\n", "in_cohort_dir = \"../../input/GEO/Mesothelioma/GSE64738\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Mesothelioma/GSE64738.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Mesothelioma/gene_data/GSE64738.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Mesothelioma/clinical_data/GSE64738.csv\"\n", "json_path = \"../../output/preprocess/Mesothelioma/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "efe87179", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "6a93ace1", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:59:16.662577Z", "iopub.status.busy": "2025-03-25T07:59:16.662436Z", "iopub.status.idle": "2025-03-25T07:59:16.897982Z", "shell.execute_reply": "2025-03-25T07:59:16.897550Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Files in the directory:\n", "['GSE64738_family.soft.gz', 'GSE64738_series_matrix.txt.gz']\n", "SOFT file: ../../input/GEO/Mesothelioma/GSE64738/GSE64738_family.soft.gz\n", "Matrix file: ../../input/GEO/Mesothelioma/GSE64738/GSE64738_series_matrix.txt.gz\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Mithramycin Depletes Sp1 and Activates p53 to Mediate Senescence and Apoptosis of Pleural Mesothelioma Cells \"\n", "!Series_summary\t\"We used microarrays to detail the global gene expression of mithramycin treated cells, xenografts and sp1 depleted cells with p53 overexpression.\"\n", "!Series_overall_design\t\"MPM cells and xenografts were treated with mithramycin or SP1 depleted/p53 overexpressed MPM cells were selected for RNA extraction and hybridization on Affymetrix microarrays. We sought to see the invitro and invivo effect of mithramycin (pharmacological model) and depletion of SP1 and overexpression of p53 (genetic model).\"\n", "Sample Characteristics Dictionary:\n", "{0: ['cell type: Malignant pleural mesothelioma cells', 'cell type: Malignant pleural mesothelioma xenografts']}\n" ] } ], "source": [ "# 1. Check what files are actually in the directory\n", "import os\n", "print(\"Files in the directory:\")\n", "files = os.listdir(in_cohort_dir)\n", "print(files)\n", "\n", "# 2. Find appropriate files with more flexible pattern matching\n", "soft_file = None\n", "matrix_file = None\n", "\n", "for file in files:\n", " file_path = os.path.join(in_cohort_dir, file)\n", " # Look for files that might contain SOFT or matrix data with various possible extensions\n", " if 'soft' in file.lower() or 'family' in file.lower() or file.endswith('.soft.gz'):\n", " soft_file = file_path\n", " if 'matrix' in file.lower() or file.endswith('.txt.gz') or file.endswith('.tsv.gz'):\n", " matrix_file = file_path\n", "\n", "if not soft_file:\n", " print(\"Warning: Could not find a SOFT file. Using the first .gz file as fallback.\")\n", " gz_files = [f for f in files if f.endswith('.gz')]\n", " if gz_files:\n", " soft_file = os.path.join(in_cohort_dir, gz_files[0])\n", "\n", "if not matrix_file:\n", " print(\"Warning: Could not find a matrix file. Using the second .gz file as fallback if available.\")\n", " gz_files = [f for f in files if f.endswith('.gz')]\n", " if len(gz_files) > 1 and soft_file != os.path.join(in_cohort_dir, gz_files[1]):\n", " matrix_file = os.path.join(in_cohort_dir, gz_files[1])\n", " elif len(gz_files) == 1 and not soft_file:\n", " matrix_file = os.path.join(in_cohort_dir, gz_files[0])\n", "\n", "print(f\"SOFT file: {soft_file}\")\n", "print(f\"Matrix file: {matrix_file}\")\n", "\n", "# 3. Read files if found\n", "if soft_file and matrix_file:\n", " # Read the matrix file to obtain background information and sample characteristics data\n", " background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", " clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", " \n", " try:\n", " background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", " \n", " # Obtain the sample characteristics dictionary from the clinical dataframe\n", " sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", " \n", " # Explicitly print out all the background information and the sample characteristics dictionary\n", " print(\"Background Information:\")\n", " print(background_info)\n", " print(\"Sample Characteristics Dictionary:\")\n", " print(sample_characteristics_dict)\n", " except Exception as e:\n", " print(f\"Error processing files: {e}\")\n", " # Try swapping files if first attempt fails\n", " print(\"Trying to swap SOFT and matrix files...\")\n", " temp = soft_file\n", " soft_file = matrix_file\n", " matrix_file = temp\n", " try:\n", " background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", " sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", " print(\"Background Information:\")\n", " print(background_info)\n", " print(\"Sample Characteristics Dictionary:\")\n", " print(sample_characteristics_dict)\n", " except Exception as e:\n", " print(f\"Still error after swapping: {e}\")\n", "else:\n", " print(\"Could not find necessary files for processing.\")\n" ] }, { "cell_type": "markdown", "id": "7ee084b6", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "0538fdc3", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:59:16.899525Z", "iopub.status.busy": "2025-03-25T07:59:16.899409Z", "iopub.status.idle": "2025-03-25T07:59:16.907533Z", "shell.execute_reply": "2025-03-25T07:59:16.907236Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Preview of selected clinical data:\n", "{'GSM1579060': [1.0], 'GSM1579061': [1.0], 'GSM1579062': [1.0], 'GSM1579063': [1.0], 'GSM1579064': [1.0], 'GSM1579065': [1.0], 'GSM1579066': [1.0], 'GSM1579067': [1.0], 'GSM1579068': [1.0], 'GSM1579069': [1.0], 'GSM1579070': [1.0], 'GSM1579071': [1.0], 'GSM1579072': [1.0], 'GSM1579073': [1.0], 'GSM1579074': [1.0], 'GSM1579075': [1.0], 'GSM1579076': [1.0], 'GSM1579077': [1.0], 'GSM1579078': [1.0], 'GSM1579079': [1.0], 'GSM1579080': [1.0], 'GSM1579081': [1.0], 'GSM1579082': [1.0], 'GSM1579083': [1.0], 'GSM1579084': [1.0], 'GSM1579085': [1.0], 'GSM1579086': [1.0], 'GSM1579087': [1.0], 'GSM1579088': [1.0], 'GSM1579089': [1.0], 'GSM1579090': [1.0], 'GSM1579091': [1.0], 'GSM1579092': [1.0], 'GSM1579093': [1.0], 'GSM1579094': [1.0], 'GSM1579095': [1.0], 'GSM1579096': [1.0], 'GSM1579097': [1.0], 'GSM1579098': [1.0], 'GSM1579099': [1.0], 'GSM1579100': [1.0], 'GSM1579101': [1.0], 'GSM1579102': [1.0], 'GSM1579103': [1.0], 'GSM1579104': [1.0]}\n", "Clinical data saved to: ../../output/preprocess/Mesothelioma/clinical_data/GSE64738.csv\n" ] } ], "source": [ "import pandas as pd\n", "import re\n", "import os\n", "from typing import Optional, Dict, Any, Callable\n", "\n", "# 1. Gene Expression Data Availability\n", "# Based on the series summary and overall design, this dataset appears to contain gene expression data\n", "# from microarray experiments with Affymetrix microarrays\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "\n", "# For trait (Mesothelioma):\n", "# From the sample characteristics dictionary, we can see at key 0, there's information about cell type\n", "# indicating \"Malignant pleural mesothelioma cells\" and \"Malignant pleural mesothelioma xenografts\"\n", "trait_row = 0 # The trait information is available at key 0\n", "\n", "# For age:\n", "# There is no information about the age of samples in the sample characteristics\n", "age_row = None\n", "\n", "# For gender:\n", "# There is no information about the gender of samples in the sample characteristics\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion\n", "\n", "def convert_trait(value):\n", " \"\"\"Convert trait value to binary (1 for Mesothelioma, 0 for control)\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " # Extract the value after colon\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Since all samples are mesothelioma (cells or xenografts), set all to 1\n", " if 'mesothelioma' in value.lower():\n", " return 1\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age value to continuous\"\"\"\n", " # Not used in this dataset as age information is not available\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n", " # Not used in this dataset as gender information is not available\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine trait data availability\n", "is_trait_available = trait_row is not None\n", "\n", "# Conduct initial filtering\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Assuming clinical_data is from the previous step, likely extracted from the matrix file\n", " # and already available in memory. We'll use it directly.\n", " # If clinical_data is not defined, we should access the variable that contains the data\n", " try:\n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data, # Use the data that should be available from previous step\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical data\n", " preview = preview_df(selected_clinical_df)\n", " print(\"Preview of selected clinical data:\")\n", " print(preview)\n", " \n", " # Save the clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to: {out_clinical_data_file}\")\n", " except NameError:\n", " print(\"Clinical data not available from previous step. Cannot proceed with clinical feature extraction.\")\n" ] }, { "cell_type": "markdown", "id": "f8c42140", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "87879066", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:59:16.908759Z", "iopub.status.busy": "2025-03-25T07:59:16.908654Z", "iopub.status.idle": "2025-03-25T07:59:17.141891Z", "shell.execute_reply": "2025-03-25T07:59:17.141502Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This appears to be a SuperSeries. Looking at the SOFT file to find potential subseries:\n", "No subseries references found in the first 1000 lines of the SOFT file.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Gene data extraction result:\n", "Number of rows: 54675\n", "First 20 gene/probe identifiers:\n", "Index(['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at', '1294_at',\n", " '1316_at', '1320_at', '1405_i_at', '1431_at', '1438_at', '1487_at',\n", " '1494_f_at', '1552256_a_at', '1552257_a_at', '1552258_at', '1552261_at',\n", " '1552263_at', '1552264_a_at', '1552266_at'],\n", " dtype='object', name='ID')\n" ] } ], "source": [ "# 1. First get the path to the soft and matrix files\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Looking more carefully at the background information\n", "# This is a SuperSeries which doesn't contain direct gene expression data\n", "# Need to investigate the soft file to find the subseries\n", "print(\"This appears to be a SuperSeries. Looking at the SOFT file to find potential subseries:\")\n", "\n", "# Open the SOFT file to try to identify subseries\n", "with gzip.open(soft_file, 'rt') as f:\n", " subseries_lines = []\n", " for i, line in enumerate(f):\n", " if 'Series_relation' in line and 'SuperSeries of' in line:\n", " subseries_lines.append(line.strip())\n", " if i > 1000: # Limit search to first 1000 lines\n", " break\n", "\n", "# Display the subseries found\n", "if subseries_lines:\n", " print(\"Found potential subseries references:\")\n", " for line in subseries_lines:\n", " print(line)\n", "else:\n", " print(\"No subseries references found in the first 1000 lines of the SOFT file.\")\n", "\n", "# Despite trying to extract gene data, we expect it might fail because this is a SuperSeries\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(\"\\nGene data extraction result:\")\n", " print(\"Number of rows:\", len(gene_data))\n", " print(\"First 20 gene/probe identifiers:\")\n", " print(gene_data.index[:20])\n", "except Exception as e:\n", " print(f\"Error extracting gene data: {e}\")\n", " print(\"This confirms the dataset is a SuperSeries without direct gene expression data.\")\n" ] }, { "cell_type": "markdown", "id": "ee780aea", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "7c76101e", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:59:17.143285Z", "iopub.status.busy": "2025-03-25T07:59:17.143168Z", "iopub.status.idle": "2025-03-25T07:59:17.145101Z", "shell.execute_reply": "2025-03-25T07:59:17.144806Z" } }, "outputs": [], "source": [ "# Based on biomedical knowledge, the gene identifiers shown (like '1007_s_at', '1053_at', etc.)\n", "# are Affymetrix probe set IDs (from the HG-U133 series platform), not human gene symbols.\n", "# These IDs need to be mapped to standard human gene symbols for consistency and interpretation.\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "fe92bc1a", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "4142f0f7", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:59:17.146272Z", "iopub.status.busy": "2025-03-25T07:59:17.146167Z", "iopub.status.idle": "2025-03-25T07:59:21.374597Z", "shell.execute_reply": "2025-03-25T07:59:21.374075Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene annotation preview:\n", "{'ID': ['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1 /// MIR4640', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780 /// 100616237', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409 /// XM_006715073'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype', '0001655 // urogenital system development // inferred from sequence or structural similarity /// 0001656 // metanephros development // inferred from electronic annotation /// 0001658 // branching involved in ureteric bud morphogenesis // inferred from expression pattern /// 0001822 // kidney development // inferred from expression pattern /// 0001823 // mesonephros development // inferred from sequence or structural similarity /// 0003337 // mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from expression pattern /// 0006351 // transcription, DNA-templated // inferred from direct assay /// 0006355 // regulation of transcription, DNA-templated // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0007417 // central nervous system development // inferred from expression pattern /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from expression pattern /// 0030878 // thyroid gland development // inferred from mutant phenotype /// 0038194 // thyroid-stimulating hormone signaling pathway // traceable author statement /// 0039003 // pronephric field specification // inferred from sequence or structural similarity /// 0042472 // inner ear morphogenesis // inferred from sequence or structural similarity /// 0042981 // regulation of apoptotic process // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-templated // inferred from direct assay /// 0045893 // positive regulation of transcription, DNA-templated // inferred from sequence or structural similarity /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from direct assay /// 0048793 // pronephros development // inferred from sequence or structural similarity /// 0071371 // cellular response to gonadotropin stimulus // inferred from direct assay /// 0071599 // otic vesicle development // inferred from expression pattern /// 0072050 // S-shaped body morphogenesis // inferred from electronic annotation /// 0072073 // kidney epithelium development // inferred from electronic annotation /// 0072108 // positive regulation of mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from sequence or structural similarity /// 0072164 // mesonephric tubule development // inferred from electronic annotation /// 0072207 // metanephric epithelium development // inferred from expression pattern /// 0072221 // metanephric distal convoluted tubule development // inferred from sequence or structural similarity /// 0072278 // metanephric comma-shaped body morphogenesis // inferred from expression pattern /// 0072284 // metanephric S-shaped body morphogenesis // inferred from expression pattern /// 0072289 // metanephric nephron tubule formation // inferred from sequence or structural similarity /// 0072305 // negative regulation of mesenchymal cell apoptotic process involved in metanephric nephron morphogenesis // inferred from sequence or structural similarity /// 0072307 // regulation of metanephric nephron tubule epithelial cell differentiation // inferred from sequence or structural similarity /// 0090190 // positive regulation of branching involved in ureteric bud morphogenesis // inferred from sequence or structural similarity /// 1900212 // negative regulation of mesenchymal cell apoptotic process involved in metanephros development // inferred from sequence or structural similarity /// 1900215 // negative regulation of apoptotic process involved in metanephric collecting duct development // inferred from sequence or structural similarity /// 1900218 // negative regulation of apoptotic process involved in metanephric nephron tubule development // inferred from sequence or structural similarity /// 2000594 // positive regulation of metanephric DCT cell differentiation // inferred from sequence or structural similarity /// 2000611 // positive regulation of thyroid hormone generation // inferred from mutant phenotype /// 2000612 // regulation of thyroid-stimulating hormone secretion // inferred from mutant phenotype', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007602 // phototransduction // inferred from electronic annotation /// 0007603 // phototransduction, visible light // traceable author statement /// 0016056 // rhodopsin mediated signaling pathway // traceable author statement /// 0022400 // regulation of rhodopsin mediated signaling pathway // traceable author statement /// 0030828 // positive regulation of cGMP biosynthetic process // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0031284 // positive regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay', '0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005730 // nucleolus // inferred from direct assay', '0001750 // photoreceptor outer segment // inferred from electronic annotation /// 0001917 // photoreceptor inner segment // inferred from electronic annotation /// 0005578 // proteinaceous extracellular matrix // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from direct assay /// 0016020 // membrane // inferred from electronic annotation /// 0097381 // photoreceptor disc membrane // traceable author statement'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay', '0000979 // RNA polymerase II core promoter sequence-specific DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from mutant phenotype /// 0003700 // sequence-specific DNA binding transcription factor activity // inferred from direct assay /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0044212 // transcription regulatory region DNA binding // inferred from direct assay', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation /// 0046872 // metal ion binding // inferred from electronic annotation']}\n" ] } ], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "8f90ea26", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "b938874c", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:59:21.376156Z", "iopub.status.busy": "2025-03-25T07:59:21.376042Z", "iopub.status.idle": "2025-03-25T07:59:21.607094Z", "shell.execute_reply": "2025-03-25T07:59:21.606449Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Original number of probes: 21278\n", "Number of genes after mapping: 21278\n", "First 10 gene symbols after mapping:\n", "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1',\n", " 'A4GALT', 'A4GNT', 'AA06'],\n", " dtype='object', name='Gene')\n" ] } ], "source": [ "# 1. Identify columns for gene identifiers and gene symbols from the annotation data\n", "# Based on the preview, 'ID' contains the probe IDs (e.g., '1007_s_at') which match the gene expression data\n", "# 'Gene Symbol' contains the human gene symbols we need (e.g., 'DDR1 /// MIR4640')\n", "prob_col = 'ID'\n", "gene_col = 'Gene Symbol'\n", "\n", "# 2. Get the gene mapping dataframe\n", "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression data\n", "# This handles the many-to-many relations by splitting and summing appropriately\n", "gene_data = apply_gene_mapping(gene_data, mapping_df)\n", "\n", "# Print some statistics about the gene mapping process\n", "print(f\"Original number of probes: {len(gene_data.index)}\")\n", "print(f\"Number of genes after mapping: {len(gene_data)}\")\n", "print(\"First 10 gene symbols after mapping:\")\n", "print(gene_data.index[:10])\n" ] }, { "cell_type": "markdown", "id": "db7fd4ad", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 8, "id": "41c3d521", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:59:21.608895Z", "iopub.status.busy": "2025-03-25T07:59:21.608784Z", "iopub.status.idle": "2025-03-25T07:59:27.859548Z", "shell.execute_reply": "2025-03-25T07:59:27.859159Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Top 10 gene indices before normalization: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT', 'AA06']\n", "Top 10 gene indices after normalization: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT', 'AA06']\n", "Shape of normalized gene data: (19845, 45)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Saved normalized gene data to ../../output/preprocess/Mesothelioma/gene_data/GSE64738.csv\n", "Successfully loaded previously saved clinical data\n", "Clinical data shape: (1, 44)\n", "Clinical data index: [1.0]\n", "Before linking:\n", "Clinical data shape: (1, 44)\n", "Genetic data shape: (19845, 45)\n", "Shape of linked data after linking: (45, 19846)\n", "Columns in linked_data: [1.0, 'A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT']...\n", "Using trait column for missing value handling: 1.0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Shape of linked data after handling missing values: (44, 19846)\n", "Quartiles for '1.0':\n", " 25%: 1.0\n", " 50% (Median): 1.0\n", " 75%: 1.0\n", "Min: 1.0\n", "Max: 1.0\n", "The distribution of the feature '1.0' in this dataset is severely biased.\n", "\n", "Dataset validation failed. Final linked data not saved.\n" ] } ], "source": [ "# 1. Normalize gene symbols in the gene expression data\n", "print(f\"Top 10 gene indices before normalization: {gene_data.index[:10].tolist()}\")\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Top 10 gene indices after normalization: {normalized_gene_data.index[:10].tolist()}\")\n", "print(f\"Shape of normalized gene data: {normalized_gene_data.shape}\")\n", "\n", "# Create directory for gene data file if it doesn't exist\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "# Save the normalized gene data\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Saved normalized gene data to {out_gene_data_file}\")\n", "\n", "# 2. Load the previously saved clinical data properly\n", "try:\n", " # Try to load the previously saved clinical data with proper index\n", " selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)\n", " print(\"Successfully loaded previously saved clinical data\")\n", " print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n", " print(f\"Clinical data index: {selected_clinical_df.index.tolist()}\")\n", "except Exception as e:\n", " print(f\"Error loading clinical data: {e}\")\n", " print(\"Regenerating clinical data...\")\n", " \n", " # Extract clinical data with correct trait_row value (0 from step 2)\n", " soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", " background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", " clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", " background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", " \n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=0, # Use correct row index from step 2\n", " convert_trait=convert_trait,\n", " age_row=None,\n", " convert_age=None,\n", " gender_row=None,\n", " convert_gender=None\n", " )\n", " \n", " # Save clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Saved clinical data to {out_clinical_data_file}\")\n", "\n", "# 3. Link clinical and genetic data\n", "print(\"Before linking:\")\n", "print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n", "print(f\"Genetic data shape: {normalized_gene_data.shape}\")\n", "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n", "print(f\"Shape of linked data after linking: {linked_data.shape}\")\n", "print(f\"Columns in linked_data: {linked_data.columns.tolist()[:10]}...\") # Print first 10 columns\n", "\n", "# 4. Handle missing values in the linked data\n", "# Find the correct column name for the trait\n", "trait_col = None\n", "for col in linked_data.columns:\n", " if col == trait or 'Mesothelioma' in str(col):\n", " trait_col = col\n", " break\n", "\n", "if trait_col is None and len(linked_data.columns) > 0:\n", " # If we can't find the trait column by name, use the first column (assuming it's the trait)\n", " trait_col = linked_data.columns[0]\n", "\n", "print(f\"Using trait column for missing value handling: {trait_col}\")\n", "linked_data = handle_missing_values(linked_data, trait_col)\n", "print(f\"Shape of linked data after handling missing values: {linked_data.shape}\")\n", "\n", "# 5. Determine if the trait and demographic features are biased\n", "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait_col)\n", "\n", "# 6. Validate the dataset and save cohort information\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_trait_biased,\n", " df=unbiased_linked_data,\n", " note=\"Dataset contains gene expression from mesothelioma cells and xenografts. All samples have the same trait value (1.0), making the dataset biased for trait analysis.\"\n", ")\n", "\n", "# 7. Save the linked data if it's usable\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Saved processed linked data to {out_data_file}\")\n", "else:\n", " print(\"Dataset validation failed. Final linked data not saved.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }