{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "5da9ed20", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Substance_Use_Disorder\"\n", "cohort = \"GSE103580\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Substance_Use_Disorder\"\n", "in_cohort_dir = \"../../input/GEO/Substance_Use_Disorder/GSE103580\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Substance_Use_Disorder/GSE103580.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Substance_Use_Disorder/gene_data/GSE103580.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Substance_Use_Disorder/clinical_data/GSE103580.csv\"\n", "json_path = \"../../output/preprocess/Substance_Use_Disorder/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "35931135", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "788ffdd4", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "715ec1c8", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "3b13cc94", "metadata": {}, "outputs": [], "source": [ "# 1. Gene Expression Data Availability\n", "is_gene_available = True # The background information mentions \"gene expression profiling\", so gene data is available\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "trait_row = 0 # Disease status information is available in the sample characteristics dictionary at key 0\n", "age_row = None # Age information is not available in the sample characteristics\n", "gender_row = None # Gender information is not available in the sample characteristics\n", "\n", "# 2.2 Data Type Conversion\n", "\n", "def convert_trait(value):\n", " \"\"\"Convert alcoholic liver disease status to binary representation.\n", " 0: Control or less severe (Alcoholic steatosis or Alcoholic cirrhosis)\n", " 1: Alcoholic hepatitis (more severe condition)\n", " \"\"\"\n", " if value is None or not isinstance(value, str):\n", " return None\n", " \n", " # Extract the value after the colon if it exists\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Convert to binary based on presence of alcoholic hepatitis\n", " if \"alcoholic hepatitis\" in value.lower():\n", " return 1\n", " elif \"alcoholic steatosis\" in value.lower() or \"alcoholic cirrhosis\" in value.lower():\n", " return 0\n", " else:\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age to continuous value (not used as age data is unavailable).\"\"\"\n", " if value is None or not isinstance(value, str):\n", " return None\n", " \n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " try:\n", " return float(value)\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender to binary (not used as gender data is unavailable).\"\"\"\n", " if value is None or not isinstance(value, str):\n", " return None\n", " \n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " value = value.lower()\n", " if \"female\" in value or \"f\" == value:\n", " return 0\n", " elif \"male\" in value or \"m\" == value:\n", " return 1\n", " else:\n", " return None\n", "\n", "# 3. Save Metadata\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Extract clinical features\n", " clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical features\n", " preview = preview_df(clinical_df)\n", " print(\"Clinical data preview:\")\n", " print(preview)\n", " \n", " # Save the clinical data to CSV\n", " clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "be47179f", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "2b1b4491", "metadata": {}, "outputs": [], "source": [ "# 1. Get the file paths for the SOFT file and matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. First, let's examine the structure of the matrix file to understand its format\n", "import gzip\n", "\n", "# Peek at the first few lines of the file to understand its structure\n", "with gzip.open(matrix_file, 'rt') as file:\n", " # Read first 100 lines to find the header structure\n", " for i, line in enumerate(file):\n", " if '!series_matrix_table_begin' in line:\n", " print(f\"Found data marker at line {i}\")\n", " # Read the next line which should be the header\n", " header_line = next(file)\n", " print(f\"Header line: {header_line.strip()}\")\n", " # And the first data line\n", " first_data_line = next(file)\n", " print(f\"First data line: {first_data_line.strip()}\")\n", " break\n", " if i > 100: # Limit search to first 100 lines\n", " print(\"Matrix table marker not found in first 100 lines\")\n", " break\n", "\n", "# 3. Now try to get the genetic data with better error handling\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(gene_data.index[:20])\n", "except KeyError as e:\n", " print(f\"KeyError: {e}\")\n", " \n", " # Alternative approach: manually extract the data\n", " print(\"\\nTrying alternative approach to read the gene data:\")\n", " with gzip.open(matrix_file, 'rt') as file:\n", " # Find the start of the data\n", " for line in file:\n", " if '!series_matrix_table_begin' in line:\n", " break\n", " \n", " # Read the headers and data\n", " import pandas as pd\n", " df = pd.read_csv(file, sep='\\t', index_col=0)\n", " print(f\"Column names: {df.columns[:5]}\")\n", " print(f\"First 20 row IDs: {df.index[:20]}\")\n", " gene_data = df\n" ] }, { "cell_type": "markdown", "id": "1ad8b25c", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "c28e24ca", "metadata": {}, "outputs": [], "source": [ "# Based on the gene identifiers shown, these appear to be Affymetrix probeset IDs (like \"11715100_at\"),\n", "# not standard human gene symbols. The format with \"_at\", \"_s_at\", and \"_x_at\" suffixes is typical for\n", "# Affymetrix microarray probesets. These identifiers will need to be mapped to standard gene symbols.\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "088857f6", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "b89faef9", "metadata": {}, "outputs": [], "source": [ "# 1. Let's first examine the structure of the SOFT file before trying to parse it\n", "import gzip\n", "\n", "# Look at the first few lines of the SOFT file to understand its structure\n", "print(\"Examining SOFT file structure:\")\n", "try:\n", " with gzip.open(soft_file, 'rt') as file:\n", " # Read first 20 lines to understand the file structure\n", " for i, line in enumerate(file):\n", " if i < 20:\n", " print(f\"Line {i}: {line.strip()}\")\n", " else:\n", " break\n", "except Exception as e:\n", " print(f\"Error reading SOFT file: {e}\")\n", "\n", "# 2. Now let's try a more robust approach to extract the gene annotation\n", "# Instead of using the library function which failed, we'll implement a custom approach\n", "try:\n", " # First, look for the platform section which contains gene annotation\n", " platform_data = []\n", " with gzip.open(soft_file, 'rt') as file:\n", " in_platform_section = False\n", " for line in file:\n", " if line.startswith('^PLATFORM'):\n", " in_platform_section = True\n", " continue\n", " if in_platform_section and line.startswith('!platform_table_begin'):\n", " # Next line should be the header\n", " header = next(file).strip()\n", " platform_data.append(header)\n", " # Read until the end of the platform table\n", " for table_line in file:\n", " if table_line.startswith('!platform_table_end'):\n", " break\n", " platform_data.append(table_line.strip())\n", " break\n", " \n", " # If we found platform data, convert it to a DataFrame\n", " if platform_data:\n", " import pandas as pd\n", " import io\n", " platform_text = '\\n'.join(platform_data)\n", " gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n", " low_memory=False, on_bad_lines='skip')\n", " print(\"\\nGene annotation preview:\")\n", " print(preview_df(gene_annotation))\n", " else:\n", " print(\"Could not find platform table in SOFT file\")\n", " \n", " # Try an alternative approach - extract mapping from other sections\n", " with gzip.open(soft_file, 'rt') as file:\n", " for line in file:\n", " if 'ANNOTATION information' in line or 'annotation information' in line:\n", " print(f\"Found annotation information: {line.strip()}\")\n", " if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n", " print(f\"Platform title: {line.strip()}\")\n", " \n", "except Exception as e:\n", " print(f\"Error processing gene annotation: {e}\")\n" ] }, { "cell_type": "markdown", "id": "b190ecab", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "c976d4d5", "metadata": {}, "outputs": [], "source": [ "# 1. Identify the gene identifier and gene symbol columns from the gene annotation DataFrame\n", "prob_col = 'ID' # The column in gene_annotation that contains probe IDs (matching gene_data index)\n", "gene_col = 'Gene Symbol' # The column in gene_annotation that contains gene symbols\n", "\n", "# 2. Extract the mapping from probe IDs to gene symbols\n", "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n", "print(f\"Gene mapping preview: {mapping_df.head()}\")\n", "print(f\"Number of probes with gene mapping: {len(mapping_df)}\")\n", "\n", "# 3. Convert the probe-level measurements to gene-level expression data\n", "gene_data = apply_gene_mapping(gene_data, mapping_df)\n", "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n", "print(f\"First few gene symbols: {list(gene_data.index[:5])}\")\n", "\n", "# Save the gene expression data\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "c31e19f4", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "4644fd45", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize gene symbols in the obtained gene expression data\n", "print(f\"Gene data shape before normalization: {gene_data.shape}\")\n", "\n", "# Normalize gene symbols using NCBI Gene database\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", "\n", "# Save the normalized gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Check if trait data is available before proceeding with clinical data extraction\n", "if trait_row is None:\n", " print(\"Trait row is None. Cannot extract trait information from clinical data.\")\n", " # Create an empty dataframe for clinical features\n", " clinical_features = pd.DataFrame()\n", " \n", " # Create an empty dataframe for linked data\n", " linked_data = pd.DataFrame()\n", " \n", " # Validate and save cohort info\n", " validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=False, # Trait data is not available\n", " is_biased=True, # Not applicable but required\n", " df=pd.DataFrame(), # Empty dataframe\n", " note=f\"Dataset contains gene expression data but lacks clear trait indicators for {trait} status.\"\n", " )\n", " print(\"Data was determined to be unusable due to missing trait indicators and was not saved\")\n", "else:\n", " try:\n", " # Get the file paths for the matrix file to extract clinical data\n", " _, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", " \n", " # Get raw clinical data from the matrix file\n", " _, clinical_raw = get_background_and_clinical_data(matrix_file)\n", " \n", " # Verify clinical data structure\n", " print(\"Raw clinical data shape:\", clinical_raw.shape)\n", " \n", " # Extract clinical features using the defined conversion functions\n", " clinical_features = geo_select_clinical_features(\n", " clinical_df=clinical_raw,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " print(\"Clinical features:\")\n", " print(clinical_features)\n", " \n", " # Save clinical features to file\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " clinical_features.to_csv(out_clinical_data_file)\n", " print(f\"Clinical features saved to {out_clinical_data_file}\")\n", " \n", " # 3. Link clinical and genetic data\n", " linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n", " print(f\"Linked data shape: {linked_data.shape}\")\n", " print(\"Linked data preview (first 5 rows, first 5 columns):\")\n", " print(linked_data.iloc[:5, :5])\n", " \n", " # 4. Handle missing values\n", " print(\"Missing values before handling:\")\n", " print(f\" Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n", " if 'Age' in linked_data.columns:\n", " print(f\" Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n", " if 'Gender' in linked_data.columns:\n", " print(f\" Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n", " \n", " gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n", " print(f\" Genes with >20% missing: {sum(linked_data[gene_cols].isna().mean() > 0.2)}\")\n", " print(f\" Samples with >5% missing genes: {sum(linked_data[gene_cols].isna().mean(axis=1) > 0.05)}\")\n", " \n", " cleaned_data = handle_missing_values(linked_data, trait)\n", " print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n", " \n", " # 5. Evaluate bias in trait and demographic features\n", " is_trait_biased = False\n", " if len(cleaned_data) > 0:\n", " trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n", " is_trait_biased = trait_biased\n", " else:\n", " print(\"No data remains after handling missing values.\")\n", " is_trait_biased = True\n", " \n", " # 6. Final validation and save\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=cleaned_data,\n", " note=f\"Dataset contains gene expression data for {trait} analysis.\"\n", " )\n", " \n", " # 7. Save if usable\n", " if is_usable and len(cleaned_data) > 0:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " cleaned_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", " else:\n", " print(\"Data was determined to be unusable or empty and was not saved\")\n", " \n", " except Exception as e:\n", " print(f\"Error processing data: {e}\")\n", " # Handle the error case by still recording cohort info\n", " validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=False, # Mark as not available due to processing issues\n", " is_biased=True, \n", " df=pd.DataFrame(), # Empty dataframe\n", " note=f\"Error processing data for {trait}: {str(e)}\"\n", " )\n", " print(\"Data was determined to be unusable and was not saved\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }