# Path Configuration from tools.preprocess import * # Processing context trait = "Bladder_Cancer" cohort = "GSE203149" # Input paths in_trait_dir = "../DATA/GEO/Bladder_Cancer" in_cohort_dir = "../DATA/GEO/Bladder_Cancer/GSE203149" # Output paths out_data_file = "./output/preprocess/1/Bladder_Cancer/GSE203149.csv" out_gene_data_file = "./output/preprocess/1/Bladder_Cancer/gene_data/GSE203149.csv" out_clinical_data_file = "./output/preprocess/1/Bladder_Cancer/clinical_data/GSE203149.csv" json_path = "./output/preprocess/1/Bladder_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability # According to the background information, this dataset indeed has gene expression data. is_gene_available = True # 2. Variable Availability and Data Type Conversion # The sample characteristics dictionary shows only one row: # 0: ['disease: Muscle-invasive bladder cancer'] # There's only one unique value for "disease" (i.e., "Muscle-invasive bladder cancer"), # so the trait does not vary and is considered unavailable for our association study. trait_row = None # No entries for age or gender are found in the sample dictionary. age_row = None gender_row = None # Define conversion functions for trait, age, and gender (though not used, they must be declared): def convert_trait(value: str): # Placeholder function since trait is actually unavailable (single value). # Typical approach: parse the substring after the colon, if present. parts = value.split(":") val = parts[1].strip() if len(parts) > 1 else value.strip() # Here, we'd convert to an integer or float if relevant, # but this dataset has no meaningful variation for the trait. return None def convert_age(value: str): # No age data is available, so this is a placeholder. return None def convert_gender(value: str): # No gender data is available, so this is a placeholder. return None # 3. Save Metadata (Initial Filtering) # Trait data is considered unavailable because it doesn't vary (only one unique value). is_trait_available = False is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip the clinical feature extraction step.