# Path Configuration from tools.preprocess import * # Processing context trait = "Sickle_Cell_Anemia" cohort = "GSE41575" # Input paths in_trait_dir = "../DATA/GEO/Sickle_Cell_Anemia" in_cohort_dir = "../DATA/GEO/Sickle_Cell_Anemia/GSE41575" # Output paths out_data_file = "./output/preprocess/1/Sickle_Cell_Anemia/GSE41575.csv" out_gene_data_file = "./output/preprocess/1/Sickle_Cell_Anemia/gene_data/GSE41575.csv" out_clinical_data_file = "./output/preprocess/1/Sickle_Cell_Anemia/clinical_data/GSE41575.csv" json_path = "./output/preprocess/1/Sickle_Cell_Anemia/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine if gene expression data is available is_gene_available = False # From the background info, this appears to be pure miRNA data, so not suitable. # Step 2: Identify data availability and set corresponding row keys trait_row = None # No Sickle Cell data found age_row = None # No age data found gender_row = None # No gender data found # Step 2.2: Define data type conversion functions def convert_trait(value: str): # No trait data available, return None return None def convert_age(value: str): # No age data available, return None return None def convert_gender(value: str): # No gender data available, return None return None # Step 3: Initial filtering and save metadata # 'trait_row' is None => 'is_trait_available' should be False is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Clinical feature extraction (skip because trait_row is None) if trait_row is not None: # This code is not executed because trait_row is None selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of extracted clinical features:", preview_df(selected_clinical_df)) selected_clinical_df.to_csv(out_clinical_data_file)