# Path Configuration from tools.preprocess import * # Processing context trait = "Sickle_Cell_Anemia" cohort = "GSE53441" # Input paths in_trait_dir = "../DATA/GEO/Sickle_Cell_Anemia" in_cohort_dir = "../DATA/GEO/Sickle_Cell_Anemia/GSE53441" # Output paths out_data_file = "./output/preprocess/1/Sickle_Cell_Anemia/GSE53441.csv" out_gene_data_file = "./output/preprocess/1/Sickle_Cell_Anemia/gene_data/GSE53441.csv" out_clinical_data_file = "./output/preprocess/1/Sickle_Cell_Anemia/clinical_data/GSE53441.csv" json_path = "./output/preprocess/1/Sickle_Cell_Anemia/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine gene expression data availability # Based on the metadata ("Affymetrix Human Genome U133 Plus 2.0 array"), we conclude: is_gene_available = True # Step 2.1: Variable Availability # From the sample characteristics dictionary: # {0: ['diagnosis: sickle cell anemia (SCA)', 'diagnosis: normal'], # 1: ['tissue: PBMC']} # Row 0 has two unique values indicating different diagnoses ("normal" vs "SCA"), which aligns with our trait. trait_row = 0 age_row = None gender_row = None # Step 2.2: Data Type Conversion Functions def convert_trait(value: str) -> Optional[int]: # Extract the text after the colon parts = value.split(":", 1) val = parts[1].strip() if len(parts) > 1 else value.strip() # Heuristic: treat "normal" as 0, and "sickle cell anemia" (SCA) as 1 val_lower = val.lower() if "normal" in val_lower: return 0 elif "sickle cell" in val_lower: return 1 else: return None def convert_age(value: str) -> Optional[float]: # Since age data is not found (age_row is None), this function won't be used. # We define it for completeness. Return None by default. return None def convert_gender(value: str) -> Optional[int]: # Since gender data is not found (gender_row is None), this function won't be used. # We define it for completeness. Return None by default. return None # Step 3: Conduct initial filtering and save metadata # Trait data is available because trait_row is not None. So is_trait_available = True. is_trait_available = (trait_row is not None) initial_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Clinical Feature Extraction (Only if trait_row is not None) if trait_row is not None: # Assume 'clinical_data' is the DataFrame containing sample characteristics # (It was mentioned in the instructions as previously obtained.) selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(selected_clinical_df, n=5, max_items=200) print("Preview of the selected clinical features:", preview) # Save the clinical features to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers appear to be Affymetrix probe IDs, not standard gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1 & 2. Identify the columns in the annotation that match probe IDs and gene symbols, then create a mapping dataframe mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col="ID", gene_col="Gene Symbol") # 3. Convert probe-level measurements to gene expression data by applying the mapping gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # (Optional) Print shape or preview to verify result print("Mapped gene expression data shape:", gene_data.shape) # STEP7 # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library. # Fixing the variable name from 'selected_clinical_data' to 'selected_clinical_df' linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and some demographic features are severely biased, and remove biased features. is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct quality check and save the cohort information. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data ) # 6. If the linked data is usable, save it as a CSV file to 'out_data_file'. if is_usable: unbiased_linked_data.to_csv(out_data_file)