# Path Configuration from tools.preprocess import * # Processing context trait = "Sickle_Cell_Anemia" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/1/Sickle_Cell_Anemia/TCGA.csv" out_gene_data_file = "./output/preprocess/1/Sickle_Cell_Anemia/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/1/Sickle_Cell_Anemia/clinical_data/TCGA.csv" json_path = "./output/preprocess/1/Sickle_Cell_Anemia/cohort_info.json" import os # List of subdirectories from the TCGA root directory subdirectories = [ 'TCGA-LGG', 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)' ] # We look for subdirectories containing "sickle" or "anemia" in their name (case-insensitive) relevant_folder = None for folder in subdirectories: folder_lower = folder.lower() if "sickle" in folder_lower or "anemia" in folder_lower: relevant_folder = folder break if not relevant_folder: # No suitable directory found, we skip this trait _ = validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=False, is_trait_available=False ) print("No suitable directory found for trait Sickle_Cell_Anemia. Skipping this trait.") else: # If there was a match, proceed to load files clinical_file, genetic_file = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, relevant_folder)) clinical_data = pd.read_csv(clinical_file, index_col=0, sep='\t') genetic_data = pd.read_csv(genetic_file, index_col=0, sep='\t') print("Clinical data columns:", clinical_data.columns.tolist())