{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "c0fa5988", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Hypertension\"\n", "\n", "# Input paths\n", "tcga_root_dir = \"../../input/TCGA\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Hypertension/TCGA.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Hypertension/gene_data/TCGA.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Hypertension/clinical_data/TCGA.csv\"\n", "json_path = \"../../output/preprocess/Hypertension/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "32d4b483", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "e780da67", "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "# Step 1: Look for directories related to Hypertension\n", "tcga_subdirs = os.listdir(tcga_root_dir)\n", "print(f\"Available TCGA subdirectories: {tcga_subdirs}\")\n", "\n", "# Look for directories related to Hypertension\n", "target_dir = None\n", "hypertension_related_terms = [\"Hypertension\", \"Blood Pressure\", \"Cardiovascular\"]\n", "\n", "for subdir in tcga_subdirs:\n", " for term in hypertension_related_terms:\n", " if term.lower() in subdir.lower():\n", " target_dir = subdir\n", " break\n", " if target_dir:\n", " break\n", "\n", "if target_dir is None:\n", " print(f\"No suitable directory found for {trait}.\")\n", " # Mark the task as completed by creating a JSON record indicating data is not available\n", " validate_and_save_cohort_info(is_final=False, cohort=\"TCGA\", info_path=json_path, \n", " is_gene_available=False, is_trait_available=False)\n", " exit() # Exit the program\n", "\n", "# Step 2: Get file paths for the selected directory\n", "cohort_dir = os.path.join(tcga_root_dir, target_dir)\n", "clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n", "\n", "print(f\"Selected directory: {target_dir}\")\n", "print(f\"Clinical data file: {clinical_file_path}\")\n", "print(f\"Genetic data file: {genetic_file_path}\")\n", "\n", "# Step 3: Load clinical and genetic data\n", "clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\\t')\n", "genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\\t')\n", "\n", "# Step 4: Print column names of clinical data\n", "print(\"\\nClinical data columns:\")\n", "print(clinical_df.columns.tolist())\n", "\n", "# Additional basic information\n", "print(f\"\\nClinical data shape: {clinical_df.shape}\")\n", "print(f\"Genetic data shape: {genetic_df.shape}\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }