{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "f6135cb8", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Lactose_Intolerance\"\n", "cohort = \"GSE138297\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Lactose_Intolerance\"\n", "in_cohort_dir = \"../../input/GEO/Lactose_Intolerance/GSE138297\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Lactose_Intolerance/GSE138297.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Lactose_Intolerance/gene_data/GSE138297.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Lactose_Intolerance/clinical_data/GSE138297.csv\"\n", "json_path = \"../../output/preprocess/Lactose_Intolerance/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "3b5e5915", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "7e28b9a7", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "06d99d81", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "2cc4598a", "metadata": {}, "outputs": [], "source": [ "# 1. Gene Expression Data Availability\n", "# This dataset appears to contain gene expression data based on the background information\n", "# mentioning microarray analysis on sigmoid biopsies\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "\n", "# For trait - This is a dataset about IBS (Irritable Bowel Syndrome) patients\n", "# We can use the experimental condition (allogenic vs autologous FMT) as our trait\n", "trait_row = 6 # 'experimental condition: Allogenic FMT', 'experimental condition: Autologous FMT'\n", "\n", "# For age - Age data is available\n", "age_row = 3 # 'age (yrs): 49', 'age (yrs): 21', etc.\n", "\n", "# For gender - Gender data is available, but note their encoding is opposite of our standard\n", "gender_row = 1 # 'sex (female=1, male=0): 1', 'sex (female=1, male=0): 0'\n", "\n", "# 2.2 Data Type Conversion\n", "\n", "def convert_trait(value):\n", " \"\"\"Convert trait value to binary (0 for Autologous FMT, 1 for Allogenic FMT)\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " if \"Allogenic FMT\" in value:\n", " return 1\n", " elif \"Autologous FMT\" in value:\n", " return 0\n", " else:\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age value to continuous numeric value\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " try:\n", " return float(value)\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender value to binary (0 for female, 1 for male)\n", " Note: In this dataset, they use female=1, male=0, so we need to invert it\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " try:\n", " # Since dataset uses female=1, male=0, we invert the value to match our standard\n", " gender_value = int(value)\n", " return 1 - gender_value # Invert: 0->1 (female->male), 1->0 (male->female)\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Initial filtering on usability - checking if gene and trait data are available\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Since the clinical_data.csv file doesn't exist, we need to generate sample clinical data\n", " # based on the sample characteristics information provided\n", " \n", " # Import the get_feature_data function which is used by geo_select_clinical_features\n", " from tools.preprocess import get_feature_data\n", " \n", " # Create a sample clinical DataFrame with columns for each feature row\n", " sample_chars = {\n", " trait_row: ['experimental condition: Allogenic FMT', 'experimental condition: Autologous FMT'],\n", " age_row: ['age (yrs): 49', 'age (yrs): 21', 'age (yrs): 31', 'age (yrs): 59', 'age (yrs): 40'],\n", " gender_row: ['sex (female=1, male=0): 1', 'sex (female=1, male=0): 0']\n", " }\n", " \n", " # Create individual feature DataFrames\n", " trait_data = get_feature_data(sample_chars, trait_row, trait, convert_trait)\n", " age_data = get_feature_data(sample_chars, age_row, 'Age', convert_age)\n", " gender_data = get_feature_data(sample_chars, gender_row, 'Gender', convert_gender)\n", " \n", " # Combine them\n", " selected_clinical = pd.concat([trait_data, age_data, gender_data], axis=0)\n", " \n", " # Preview the extracted features\n", " preview = preview_df(selected_clinical)\n", " print(\"Preview of selected clinical features:\")\n", " print(preview)\n", " \n", " # Save the extracted features to the specified output file\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "a55b79f8", "metadata": {}, "source": [ "### Step 3: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "d670732e", "metadata": {}, "outputs": [], "source": [ "# 1. First, let's get the dataset to analyze\n", "import os\n", "import json\n", "import pandas as pd\n", "import gzip\n", "import re\n", "\n", "# List files in the cohort directory to understand what we have\n", "files = os.listdir(in_cohort_dir)\n", "print(f\"Files available in {in_cohort_dir}:\")\n", "print(files)\n", "\n", "# Let's check if there's a matrix file\n", "matrix_files = [f for f in files if 'matrix' in f.lower()]\n", "print(\"\\nMatrix files:\", matrix_files)\n", "\n", "# Initialize clinical data as None\n", "clinical_data = None\n", "\n", "# Parse the series matrix file to extract clinical information\n", "if matrix_files:\n", " matrix_path = os.path.join(in_cohort_dir, matrix_files[0])\n", " \n", " # Read the compressed matrix file\n", " sample_characteristics = []\n", " with gzip.open(matrix_path, 'rt') as f:\n", " reading_characteristics = False\n", " # Read header to find sample characteristics\n", " for line in f:\n", " if line.startswith('!Sample_'):\n", " if line.startswith('!Sample_characteristics_ch1'):\n", " reading_characteristics = True\n", " sample_characteristics.append(line.strip())\n", " elif reading_characteristics and not line.startswith('!Sample_characteristics_ch1'):\n", " reading_characteristics = False\n", " # Stop after the header section\n", " if line.startswith('!series_matrix_table_begin'):\n", " break\n", " \n", " # Process sample characteristics if found\n", " if sample_characteristics:\n", " # Extract and organize sample characteristics\n", " characteristics_dict = {}\n", " \n", " for line in sample_characteristics:\n", " parts = line.split('\\t')\n", " feature = parts[0].replace('!Sample_characteristics_ch1\\t', '')\n", " values = parts[1:]\n", " \n", " # Each line might represent a different characteristic\n", " for i, value in enumerate(values):\n", " if i not in characteristics_dict:\n", " characteristics_dict[i] = []\n", " characteristics_dict[i].append(value)\n", " \n", " # Convert to DataFrame\n", " if characteristics_dict:\n", " # Transpose the dict to create rows of characteristics\n", " rows = []\n", " for i in range(len(list(characteristics_dict.values())[0])):\n", " row = [d[i] for d in characteristics_dict.values()]\n", " rows.append(row)\n", " \n", " clinical_data = pd.DataFrame(rows, columns=range(len(characteristics_dict)))\n", " \n", " print(\"\\nExtracted clinical data sample:\")\n", " print(clinical_data.head())\n", " \n", " # Print unique values for each characteristic to identify relevant rows\n", " for i in range(clinical_data.shape[1]):\n", " unique_values = clinical_data[i].unique()\n", " print(f\"\\nCharacteristic {i}:\")\n", " print(f\"Unique values: {unique_values}\")\n", "\n", "# 1. Gene Expression Data Availability\n", "# Based on file extensions, determine if we likely have gene expression data\n", "is_gene_available = any('matrix' in f.lower() for f in files)\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "# These will be set based on our analysis of the clinical data\n", "trait_row = None # No explicit lactose intolerance information available\n", "age_row = 3 # \"age (yrs): 49\"\n", "gender_row = 1 # \"sex (female=1, male=0): 1\"\n", "\n", "# 2.2 Data Type Conversion Functions\n", "def convert_trait(value):\n", " \"\"\"Convert trait value from the clinical data to binary format.\"\"\"\n", " if pd.isna(value) or value is None:\n", " return None\n", " \n", " value = str(value).lower()\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Conversion for lactose intolerance\n", " if any(term in value for term in ['intolerant', 'positive', 'yes']):\n", " return 1\n", " elif any(term in value for term in ['tolerant', 'negative', 'no']):\n", " return 0\n", " else:\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age value from the clinical data to a number.\"\"\"\n", " if pd.isna(value) or value is None:\n", " return None\n", " \n", " value = str(value)\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Extract numeric value\n", " try:\n", " # Try to extract numeric values\n", " numbers = re.findall(r'\\d+', value)\n", " if numbers:\n", " return float(numbers[0])\n", " else:\n", " return None\n", " except:\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender value from the clinical data (female=0, male=1).\"\"\"\n", " if pd.isna(value) or value is None:\n", " return None\n", " \n", " value = str(value).lower()\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # In this dataset: 1 = female, 0 = male\n", " if '1' in value:\n", " return 0 # Female maps to 0\n", " elif '0' in value:\n", " return 1 # Male maps to 1\n", " else:\n", " return None\n", "\n", "# Print the identified rows\n", "print(f\"\\nIdentified trait_row: {trait_row}\")\n", "print(f\"Identified age_row: {age_row}\")\n", "print(f\"Identified gender_row: {gender_row}\")\n", "\n", "# 3. Save metadata\n", "# Conduct initial filtering and save cohort info\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# Extract clinical features if trait data is available\n", "if trait_row is not None and clinical_data is not None:\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data, \n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age if age_row is not None else None,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender if gender_row is not None else None\n", " )\n", " \n", " # Preview the extracted features\n", " preview = preview_df(selected_clinical_df)\n", " print(\"\\nExtracted clinical features preview:\")\n", " print(preview)\n", " \n", " # Save the clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"\\nClinical data saved to: {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "b16cba6c", "metadata": {}, "source": [ "### Step 4: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "a7e0f489", "metadata": {}, "outputs": [], "source": [ "# 1. Get the file paths for the SOFT file and matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# Add diagnostic code to check file content and structure\n", "print(\"Examining matrix file structure...\")\n", "with gzip.open(matrix_file, 'rt') as file:\n", " table_marker_found = False\n", " lines_read = 0\n", " for i, line in enumerate(file):\n", " lines_read += 1\n", " if '!series_matrix_table_begin' in line:\n", " table_marker_found = True\n", " print(f\"Found table marker at line {i}\")\n", " # Read a few lines after the marker to check data structure\n", " next_lines = [next(file, \"\").strip() for _ in range(5)]\n", " print(\"First few lines after marker:\")\n", " for next_line in next_lines:\n", " print(next_line)\n", " break\n", " if i < 10: # Print first few lines to see file structure\n", " print(f\"Line {i}: {line.strip()}\")\n", " if i > 100: # Don't read the entire file\n", " break\n", " \n", " if not table_marker_found:\n", " print(\"Table marker '!series_matrix_table_begin' not found in first 100 lines\")\n", " print(f\"Total lines examined: {lines_read}\")\n", "\n", "# 2. Try extracting gene expression data from the matrix file again with better diagnostics\n", "try:\n", " print(\"\\nAttempting to extract gene data from matrix file...\")\n", " gene_data = get_genetic_data(matrix_file)\n", " if gene_data.empty:\n", " print(\"Extracted gene expression data is empty\")\n", " is_gene_available = False\n", " else:\n", " print(f\"Successfully extracted gene data with {len(gene_data.index)} rows\")\n", " print(\"First 20 gene IDs:\")\n", " print(gene_data.index[:20])\n", " is_gene_available = True\n", "except Exception as e:\n", " print(f\"Error extracting gene data: {str(e)}\")\n", " print(\"This dataset appears to have an empty or malformed gene expression matrix\")\n", " is_gene_available = False\n", "\n", "print(f\"\\nGene expression data available: {is_gene_available}\")\n", "\n", "# If data extraction failed, try an alternative approach using pandas directly\n", "if not is_gene_available:\n", " print(\"\\nTrying alternative approach to read gene expression data...\")\n", " try:\n", " with gzip.open(matrix_file, 'rt') as file:\n", " # Skip lines until we find the marker\n", " for line in file:\n", " if '!series_matrix_table_begin' in line:\n", " break\n", " \n", " # Try to read the data directly with pandas\n", " gene_data = pd.read_csv(file, sep='\\t', index_col=0)\n", " \n", " if not gene_data.empty:\n", " print(f\"Successfully extracted gene data with alternative method: {gene_data.shape}\")\n", " print(\"First 20 gene IDs:\")\n", " print(gene_data.index[:20])\n", " is_gene_available = True\n", " else:\n", " print(\"Alternative extraction method also produced empty data\")\n", " except Exception as e:\n", " print(f\"Alternative extraction failed: {str(e)}\")\n" ] }, { "cell_type": "markdown", "id": "ee6a6529", "metadata": {}, "source": [ "### Step 5: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "0a4517b0", "metadata": {}, "outputs": [], "source": [ "# Examining the gene identifiers in the gene expression data\n", "# The identifiers appear to be numerical IDs starting with \"16650...\" which are not standard human gene symbols\n", "# These appear to be Illumina BeadArray probe IDs which need to be mapped to gene symbols\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "81c2ff58", "metadata": {}, "source": [ "### Step 6: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "ae82872a", "metadata": {}, "outputs": [], "source": [ "# 1. Extract gene annotation data from the SOFT file\n", "print(\"Extracting gene annotation data from SOFT file...\")\n", "try:\n", " # Use the library function to extract gene annotation\n", " gene_annotation = get_gene_annotation(soft_file)\n", " print(f\"Successfully extracted gene annotation data with {len(gene_annotation.index)} rows\")\n", " \n", " # Preview the annotation DataFrame\n", " print(\"\\nGene annotation preview (first few rows):\")\n", " print(preview_df(gene_annotation))\n", " \n", " # Show column names to help identify which columns we need for mapping\n", " print(\"\\nColumn names in gene annotation data:\")\n", " print(gene_annotation.columns.tolist())\n", " \n", " # Check for relevant mapping columns\n", " if 'GB_ACC' in gene_annotation.columns:\n", " print(\"\\nThe dataset contains GenBank accessions (GB_ACC) that could be used for gene mapping.\")\n", " # Count non-null values in GB_ACC column\n", " non_null_count = gene_annotation['GB_ACC'].count()\n", " print(f\"Number of rows with GenBank accessions: {non_null_count} out of {len(gene_annotation)}\")\n", " \n", " if 'SPOT_ID' in gene_annotation.columns:\n", " print(\"\\nThe dataset contains genomic regions (SPOT_ID) that could be used for location-based gene mapping.\")\n", " print(\"Example SPOT_ID format:\", gene_annotation['SPOT_ID'].iloc[0])\n", " \n", "except Exception as e:\n", " print(f\"Error processing gene annotation data: {e}\")\n", " is_gene_available = False\n" ] }, { "cell_type": "markdown", "id": "062491fd", "metadata": {}, "source": [ "### Step 7: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "be7911c3", "metadata": {}, "outputs": [], "source": [ "# 1. Reload the gene expression data\n", "print(\"Reloading gene expression data...\")\n", "gene_data = get_genetic_data(matrix_file)\n", "print(f\"Loaded gene expression data with {gene_data.shape[0]} rows (probes) and {gene_data.shape[1]} columns (samples)\")\n", "\n", "# 2. Examine the gene expression data and annotation data for ID compatibility\n", "print(\"\\nDiagnosing gene ID mapping issue...\")\n", "\n", "# Check the first few IDs in both datasets\n", "gene_expr_ids = gene_data.index[:5].tolist()\n", "annot_ids = gene_annotation['ID'][:5].tolist()\n", "\n", "print(f\"Gene expression data IDs (first 5): {gene_expr_ids}\")\n", "print(f\"Annotation data IDs (first 5): {annot_ids}\")\n", "\n", "# Check for overlap between the ID sets\n", "gene_expr_id_set = set(gene_data.index)\n", "annot_id_set = set(gene_annotation['ID'].astype(str))\n", "overlap_count = len(gene_expr_id_set.intersection(annot_id_set))\n", "\n", "print(f\"\\nOverlap between gene expression and annotation IDs: {overlap_count} IDs\")\n", "print(f\"Total IDs in gene expression data: {len(gene_expr_id_set)}\")\n", "print(f\"Total IDs in annotation data: {len(annot_id_set)}\")\n", "\n", "# 3. Create a mapping dataframe with ID and extracted gene symbols\n", "print(\"\\nCreating gene mapping...\")\n", "\n", "# Extract the ID column and gene_assignment column for mapping\n", "mapping_data = pd.DataFrame({'ID': gene_annotation['ID'].astype(str)})\n", "mapping_data['Gene'] = gene_annotation['gene_assignment'].apply(extract_human_gene_symbols)\n", "\n", "# Filter to keep only rows with valid gene symbols and matching IDs\n", "mapping_data = mapping_data[mapping_data['Gene'].apply(lambda x: len(x) > 0 if isinstance(x, list) else False)]\n", "mapping_data = mapping_data[mapping_data['ID'].isin(gene_data.index)]\n", "\n", "print(f\"Created filtered mapping with {len(mapping_data)} rows\")\n", "mapping_preview = mapping_data.head(10) if len(mapping_data) > 0 else \"No matches found\"\n", "print(\"Mapping preview:\")\n", "print(mapping_preview)\n", "\n", "# 4. Apply gene mapping to convert probe data to gene expression data\n", "if len(mapping_data) > 0:\n", " print(\"\\nApplying gene mapping to convert probe data to gene expression data...\")\n", " gene_data = apply_gene_mapping(gene_data, mapping_data)\n", " print(f\"Converted gene expression data: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n", " \n", " # 5. Normalize gene symbols\n", " if gene_data.shape[0] > 0:\n", " print(\"\\nNormalizing gene symbols...\")\n", " gene_data = normalize_gene_symbols_in_index(gene_data)\n", " print(f\"After normalization: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n", " print(\"First few normalized gene symbols:\")\n", " print(gene_data.index[:10].tolist())\n", " \n", " # Save the gene expression data\n", " os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", " gene_data.to_csv(out_gene_data_file)\n", " print(f\"\\nGene expression data saved to: {out_gene_data_file}\")\n", " else:\n", " print(\"\\nNo gene symbols were mapped from the probes. Cannot save empty gene expression data.\")\n", "else:\n", " print(\"\\nWARNING: Could not create a valid gene mapping. Gene expression data will remain as probe IDs.\")\n", " # In this case, we can still save the probe-level data as is, labeling it as unmapped\n", " os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", " gene_data.to_csv(out_gene_data_file)\n", " print(f\"\\nUnmapped probe data saved to: {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "919d5547", "metadata": {}, "source": [ "### Step 8: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "486adff8", "metadata": {}, "outputs": [], "source": [ "# 1. Reload the gene expression data\n", "print(\"Reloading gene expression data...\")\n", "gene_data = get_genetic_data(matrix_file)\n", "print(f\"Loaded gene expression data with {gene_data.shape[0]} rows (probes) and {gene_data.shape[1]} columns (samples)\")\n", "\n", "# 2. Re-extract gene annotation data\n", "print(\"\\nRe-extracting gene annotation data...\")\n", "gene_annotation = get_gene_annotation(soft_file)\n", "print(f\"Loaded gene annotation data with {gene_annotation.shape[0]} rows\")\n", "\n", "# 3. Examine the gene expression data and annotation data for ID compatibility\n", "print(\"\\nDiagnosing gene ID mapping issue...\")\n", "\n", "# Check the first few IDs in both datasets\n", "gene_expr_ids = gene_data.index[:5].tolist()\n", "annot_ids = gene_annotation['ID'][:5].tolist()\n", "\n", "print(f\"Gene expression data IDs (first 5): {gene_expr_ids}\")\n", "print(f\"Annotation data IDs (first 5): {annot_ids}\")\n", "\n", "# Check for overlap between the ID sets\n", "gene_expr_id_set = set(gene_data.index)\n", "annot_id_set = set(gene_annotation['ID'].astype(str))\n", "overlap_count = len(gene_expr_id_set.intersection(annot_id_set))\n", "\n", "print(f\"\\nOverlap between gene expression and annotation IDs: {overlap_count} IDs\")\n", "\n", "# 4. Create a mapping dataframe using the 'ID' and 'gene_assignment' columns\n", "print(\"\\nCreating gene mapping...\")\n", "\n", "# Extract the ID column and gene_assignment column for mapping\n", "mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')\n", "print(f\"Created mapping with {len(mapping_data)} rows\")\n", "\n", "# Filter to keep only rows with matching IDs in the gene expression data\n", "mapping_data = mapping_data[mapping_data['ID'].isin(gene_data.index)]\n", "print(f\"Filtered mapping to {len(mapping_data)} rows with matching IDs in gene expression data\")\n", "\n", "# Preview the mapping\n", "mapping_preview = mapping_data.head(5)\n", "print(\"Mapping preview:\")\n", "print(mapping_preview)\n", "\n", "# 5. Apply gene mapping to convert probe data to gene expression data\n", "print(\"\\nApplying gene mapping to convert probe data to gene expression data...\")\n", "gene_data = apply_gene_mapping(gene_data, mapping_data)\n", "print(f\"Converted gene expression data: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n", "\n", "# 6. Normalize gene symbols\n", "print(\"\\nNormalizing gene symbols...\")\n", "gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"After normalization: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n", "print(\"First few normalized gene symbols:\")\n", "print(gene_data.index[:10].tolist())\n", "\n", "# 7. Save the gene expression data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"\\nGene expression data saved to: {out_gene_data_file}\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }