{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "63d9e05b", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Glucocorticoid_Sensitivity\"\n", "cohort = \"GSE42002\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Glucocorticoid_Sensitivity\"\n", "in_cohort_dir = \"../../input/GEO/Glucocorticoid_Sensitivity/GSE42002\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/GSE42002.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE42002.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE42002.csv\"\n", "json_path = \"../../output/preprocess/Glucocorticoid_Sensitivity/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "7e0b9bfe", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "f9d0eb83", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "7ead27eb", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "d8d983e6", "metadata": {}, "outputs": [], "source": [ "# Parse and analyze the dataset\n", "\n", "# 1. Determine if gene expression data is available\n", "# Based on the background information, this dataset contains gene expression arrays\n", "# measuring mRNA expression, which indicates gene expression data is available\n", "is_gene_available = True\n", "\n", "# 2. Identify data availability for trait, age, and gender\n", "\n", "# 2.1 Trait data (Glucocorticoid_Sensitivity) can be derived from the condition (trauma/control)\n", "# Looking at sample characteristics, we can see condition info at key 1\n", "trait_row = 1\n", "\n", "# Convert trait data (trauma/control) to binary values (0/1)\n", "def convert_trait(value):\n", " if value is None:\n", " return None\n", " \n", " # Extract value after colon if present\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Convert to binary (trauma=1, control=0)\n", " if 'trauma' in value.lower():\n", " return 1\n", " elif 'control' in value.lower():\n", " return 0\n", " else:\n", " return None\n", "\n", "# 2.2 Age data is not available in the sample characteristics\n", "age_row = None\n", "\n", "def convert_age(value):\n", " # Function defined but not used since age data is unavailable\n", " if value is None:\n", " return None\n", " \n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " try:\n", " return float(value)\n", " except:\n", " return None\n", "\n", "# 2.3 Gender data is not available in the sample characteristics\n", "gender_row = None\n", "\n", "def convert_gender(value):\n", " # Function defined but not used since gender data is unavailable\n", " if value is None:\n", " return None\n", " \n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " value = value.lower()\n", " if 'female' in value or 'f' == value:\n", " return 0\n", " elif 'male' in value or 'm' == value:\n", " return 1\n", " else:\n", " return None\n", "\n", "# 3. Determine trait data availability\n", "is_trait_available = trait_row is not None\n", "\n", "# Save initial metadata about dataset usability\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. If trait data is available, extract and save clinical features\n", "if trait_row is not None:\n", " # Parse the sample characteristics dictionary from the text representation\n", " sample_chars_dict = {0: ['genotype: rs1360780 AA/AG', 'genotype: rs1360780 GG'], \n", " 1: ['condition: trauma', 'condition: control'], \n", " 2: ['tissue: whole blood']}\n", " \n", " # Create the clinical dataframe correctly for geo_select_clinical_features\n", " clinical_data = pd.DataFrame()\n", " for key, values in sample_chars_dict.items():\n", " # Create a series for each row\n", " clinical_data[key] = values\n", " \n", " # Create a clinical dataframe using the library function\n", " clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the clinical dataframe\n", " preview = preview_df(clinical_df)\n", " print(\"Clinical Data Preview:\")\n", " print(preview)\n", " \n", " # Save the clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "68ba51b5", "metadata": {}, "source": [ "### Step 3: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "63eb0768", "metadata": {}, "outputs": [], "source": [ "# Import necessary libraries\n", "import pandas as pd\n", "import os\n", "import json\n", "import gzip\n", "from typing import Optional, Callable, Dict, Any\n", "\n", "# Step 3: Analyze the dataset and extract clinical features\n", "\n", "# Function to extract sample characteristics from GEO series matrix file\n", "def extract_sample_characteristics(file_path):\n", " with gzip.open(file_path, 'rt') as f:\n", " lines = []\n", " in_characteristics = False\n", " geo_accessions = []\n", " sample_titles = []\n", " \n", " for line in f:\n", " if line.startswith('!Sample_characteristics_ch1'):\n", " in_characteristics = True\n", " lines.append(line.strip())\n", " elif in_characteristics and line.startswith('!Sample_'):\n", " if not line.startswith('!Sample_characteristics_ch'):\n", " in_characteristics = False\n", " else:\n", " lines.append(line.strip())\n", " elif line.startswith('!Sample_geo_accession'):\n", " geo_accessions = line.strip().split('\\t')[1:]\n", " elif line.startswith('!Sample_title'):\n", " sample_titles = line.strip().split('\\t')[1:]\n", " \n", " # Create a dictionary to store characteristics\n", " characteristic_dict = {}\n", " for i, line in enumerate(lines):\n", " parts = line.strip().split('\\t')\n", " characteristic_dict[i] = parts[1:]\n", " \n", " # Create DataFrame\n", " characteristics_df = pd.DataFrame(characteristic_dict)\n", " if geo_accessions:\n", " characteristics_df.index = geo_accessions\n", " return characteristics_df, sample_titles\n", "\n", "# Function to detect if the file contains gene expression data\n", "def has_gene_expression(file_path):\n", " with gzip.open(file_path, 'rt') as f:\n", " for line in f:\n", " if line.startswith('!Series_platform_id'):\n", " platform = line.strip().split(\"\\t\")[1]\n", " # Check if platform is a gene expression platform (typically GPL*)\n", " if platform.startswith('GPL'):\n", " # Gene expression platforms, not miRNA or methylation specific\n", " return True\n", " if line.startswith('!Series_summary') or line.startswith('!Series_title'):\n", " # Check summary for indications this is gene expression data\n", " summary = line.strip()\n", " if 'miRNA' in summary or 'methylation' in summary:\n", " return False\n", " if line.startswith('!platform_technology'):\n", " tech = line.strip().split(\"\\t\")[1].lower()\n", " if 'expression' in tech and not ('mirna' in tech or 'methylation' in tech):\n", " return True\n", " if 'mirna' in tech or 'methylation' in tech:\n", " return False\n", " # Stop after a reasonable number of lines if we haven't found definitive info\n", " if line.startswith('!series_matrix_table_begin'):\n", " break\n", " # Default to True if we couldn't determine otherwise\n", " return True\n", "\n", "# Find and process the series matrix file\n", "matrix_file = os.path.join(in_cohort_dir, 'GSE42002_series_matrix.txt.gz')\n", "is_gene_available = has_gene_expression(matrix_file)\n", "\n", "# Extract sample characteristics\n", "clinical_data, sample_titles = extract_sample_characteristics(matrix_file)\n", "print(\"Sample Characteristics:\")\n", "for i in range(len(clinical_data.columns)):\n", " print(f\"Row {i}: {clinical_data[i].unique()}\")\n", "\n", "# Based on the data exploration, determine trait, age, and gender availability\n", "# The data shows the following rows:\n", "# Row 0: genotype rs1360780 (AA/AG vs GG)\n", "# Row 1: condition (trauma vs control)\n", "# Row 2: tissue (whole blood)\n", "\n", "# There is no direct glucocorticoid sensitivity measure in this dataset\n", "trait_row = None # No direct measure of glucocorticoid sensitivity\n", "age_row = None # No age information\n", "gender_row = None # No gender information\n", "\n", "# Define conversion functions (though they won't be used in this case)\n", "def convert_trait(value: str) -> Optional[float]:\n", " \"\"\"Convert glucocorticoid sensitivity value to float.\"\"\"\n", " if pd.isna(value) or value is None:\n", " return None\n", " # Extract value after colon if present\n", " if ':' in str(value):\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # For GSE42002, we have no direct measure of glucocorticoid sensitivity\n", " return None\n", "\n", "def convert_age(value: str) -> Optional[float]:\n", " \"\"\"Convert age value to float.\"\"\"\n", " if pd.isna(value) or value is None:\n", " return None\n", " # Extract value after colon if present\n", " if ':' in str(value):\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Try to convert to float\n", " try:\n", " # Remove any 'years' or other text\n", " value = value.lower().replace('years', '').replace('year', '').strip()\n", " value = value.split()[0] # Take first token if there are multiple\n", " return float(value)\n", " except:\n", " return None\n", "\n", "def convert_gender(value: str) -> Optional[int]:\n", " \"\"\"Convert gender value to binary (0 for female, 1 for male).\"\"\"\n", " if pd.isna(value) or value is None:\n", " return None\n", " # Extract value after colon if present\n", " if ':' in str(value):\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Convert to lowercase for case-insensitive comparison\n", " value = value.lower()\n", " \n", " if 'female' in value or 'f' == value or 'f ' in value:\n", " return 0\n", " elif 'male' in value or 'm' == value or 'm ' in value:\n", " return 1\n", " return None\n", "\n", "# Check if trait data is available\n", "is_trait_available = trait_row is not None\n", "\n", "# Save initial metadata\n", "validate_and_save_cohort_info(\n", " is_final=False, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=is_gene_available, \n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# Process clinical features if trait data is available\n", "# In this case, it's not available so we skip this step\n", "if is_trait_available:\n", " def get_feature_data(df, row_idx, feature_name, convert_func):\n", " \"\"\"Helper function to extract feature data and convert to appropriate type.\"\"\"\n", " feature_data = df[row_idx].apply(convert_func).rename(feature_name)\n", " return pd.DataFrame(feature_data)\n", " \n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age if age_row is not None else None,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender if gender_row is not None else None\n", " )\n", " \n", " # Preview the extracted clinical features\n", " preview = preview_df(selected_clinical_df)\n", " print(\"Preview of selected clinical features:\", preview)\n", " \n", " # Save the clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "else:\n", " print(\"No trait data available for this cohort. Skipping clinical feature extraction.\")\n" ] }, { "cell_type": "markdown", "id": "b5c3c4d1", "metadata": {}, "source": [ "### Step 4: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "fd632757", "metadata": {}, "outputs": [], "source": [ "# 1. Get the file paths for the SOFT file and matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. First, let's examine the structure of the matrix file to understand its format\n", "import gzip\n", "\n", "# Peek at the first few lines of the file to understand its structure\n", "with gzip.open(matrix_file, 'rt') as file:\n", " # Read first 100 lines to find the header structure\n", " for i, line in enumerate(file):\n", " if '!series_matrix_table_begin' in line:\n", " print(f\"Found data marker at line {i}\")\n", " # Read the next line which should be the header\n", " header_line = next(file)\n", " print(f\"Header line: {header_line.strip()}\")\n", " # And the first data line\n", " first_data_line = next(file)\n", " print(f\"First data line: {first_data_line.strip()}\")\n", " break\n", " if i > 100: # Limit search to first 100 lines\n", " print(\"Matrix table marker not found in first 100 lines\")\n", " break\n", "\n", "# 3. Now try to get the genetic data with better error handling\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(gene_data.index[:20])\n", "except KeyError as e:\n", " print(f\"KeyError: {e}\")\n", " \n", " # Alternative approach: manually extract the data\n", " print(\"\\nTrying alternative approach to read the gene data:\")\n", " with gzip.open(matrix_file, 'rt') as file:\n", " # Find the start of the data\n", " for line in file:\n", " if '!series_matrix_table_begin' in line:\n", " break\n", " \n", " # Read the headers and data\n", " import pandas as pd\n", " df = pd.read_csv(file, sep='\\t', index_col=0)\n", " print(f\"Column names: {df.columns[:5]}\")\n", " print(f\"First 20 row IDs: {df.index[:20]}\")\n", " gene_data = df\n" ] }, { "cell_type": "markdown", "id": "775a45d4", "metadata": {}, "source": [ "### Step 5: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "0e4e8a5a", "metadata": {}, "outputs": [], "source": [ "# Examining gene identifiers in the expression data\n", "# The identifiers start with \"ILMN_\" which indicates these are Illumina probe IDs\n", "# These are not human gene symbols but Illumina BeadChip probe identifiers\n", "# They need to be mapped to standard gene symbols for better interpretability and analysis\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "4a28698a", "metadata": {}, "source": [ "### Step 6: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "2cd96791", "metadata": {}, "outputs": [], "source": [ "# 1. Let's first examine the structure of the SOFT file before trying to parse it\n", "import gzip\n", "\n", "# Look at the first few lines of the SOFT file to understand its structure\n", "print(\"Examining SOFT file structure:\")\n", "try:\n", " with gzip.open(soft_file, 'rt') as file:\n", " # Read first 20 lines to understand the file structure\n", " for i, line in enumerate(file):\n", " if i < 20:\n", " print(f\"Line {i}: {line.strip()}\")\n", " else:\n", " break\n", "except Exception as e:\n", " print(f\"Error reading SOFT file: {e}\")\n", "\n", "# 2. Now let's try a more robust approach to extract the gene annotation\n", "# Instead of using the library function which failed, we'll implement a custom approach\n", "try:\n", " # First, look for the platform section which contains gene annotation\n", " platform_data = []\n", " with gzip.open(soft_file, 'rt') as file:\n", " in_platform_section = False\n", " for line in file:\n", " if line.startswith('^PLATFORM'):\n", " in_platform_section = True\n", " continue\n", " if in_platform_section and line.startswith('!platform_table_begin'):\n", " # Next line should be the header\n", " header = next(file).strip()\n", " platform_data.append(header)\n", " # Read until the end of the platform table\n", " for table_line in file:\n", " if table_line.startswith('!platform_table_end'):\n", " break\n", " platform_data.append(table_line.strip())\n", " break\n", " \n", " # If we found platform data, convert it to a DataFrame\n", " if platform_data:\n", " import pandas as pd\n", " import io\n", " platform_text = '\\n'.join(platform_data)\n", " gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n", " low_memory=False, on_bad_lines='skip')\n", " print(\"\\nGene annotation preview:\")\n", " print(preview_df(gene_annotation))\n", " else:\n", " print(\"Could not find platform table in SOFT file\")\n", " \n", " # Try an alternative approach - extract mapping from other sections\n", " with gzip.open(soft_file, 'rt') as file:\n", " for line in file:\n", " if 'ANNOTATION information' in line or 'annotation information' in line:\n", " print(f\"Found annotation information: {line.strip()}\")\n", " if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n", " print(f\"Platform title: {line.strip()}\")\n", " \n", "except Exception as e:\n", " print(f\"Error processing gene annotation: {e}\")\n" ] }, { "cell_type": "markdown", "id": "4ffffad5", "metadata": {}, "source": [ "### Step 7: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "1bb96250", "metadata": {}, "outputs": [], "source": [ "# 1. Observe gene identifiers and gene annotation\n", "# The gene identifiers in the expression data are Illumina probe IDs (e.g., \"ILMN_1343291\")\n", "# These correspond to the \"ID\" column in the gene annotation dataframe\n", "# The gene symbols are stored in the \"Symbol\" column of the gene annotation dataframe\n", "\n", "# 2. Get gene mapping dataframe by extracting ID and Symbol columns\n", "# Create a mapping dataframe\n", "gene_annotation = get_gene_annotation(soft_file)\n", "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n", "\n", "# 3. Convert probe-level measurements to gene expression data\n", "# Apply the gene mapping to convert probe IDs to gene symbols\n", "gene_data = apply_gene_mapping(gene_data, mapping_df)\n", "\n", "# Print information about the gene data\n", "print(f\"Original gene expression data shape: {gene_data.shape}\")\n", "if not gene_data.empty:\n", " print(f\"First 10 gene symbols: {list(gene_data.index[:10])}\")\n", " sample_count = gene_data.shape[1]\n", " print(f\"Number of samples: {sample_count}\")\n", "else:\n", " print(\"No genes mapped. Check if gene_annotation contains valid mapping information.\")\n" ] }, { "cell_type": "markdown", "id": "fe4945de", "metadata": {}, "source": [ "### Step 8: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "426a9b65", "metadata": {}, "outputs": [], "source": [ "# 1. Reload the gene expression data\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# Get gene mapping dataframe and apply it\n", "gene_annotation = get_gene_annotation(soft_file)\n", "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n", "gene_data = apply_gene_mapping(gene_data, mapping_df)\n", "\n", "# Normalize gene symbols in the obtained gene expression data\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", "print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n", "\n", "# Save the normalized gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Check if trait data is available based on previous steps\n", "# From Step 3, we determined that trait data is not available\n", "is_trait_available = False\n", "\n", "# Since there's no clinical data available, we'll create a minimal clinical dataframe with just the sample IDs\n", "gene_samples = normalized_gene_data.columns\n", "sample_df = pd.DataFrame(index=['dummy_trait'], columns=gene_samples)\n", "sample_df.loc['dummy_trait'] = None # Fill with NaN values\n", "clinical_data = sample_df\n", "\n", "print(f\"Clinical data shape: {clinical_data.shape}\")\n", "print(\"No actual clinical trait data available for this cohort.\")\n", "\n", "# 3. Link clinical and genetic data (though clinical data is just a placeholder)\n", "linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "print(\"Linked data preview (first 5 rows, first few columns):\")\n", "if linked_data.shape[1] >= 5:\n", " print(linked_data.iloc[:5, :5])\n", "else:\n", " print(linked_data.head())\n", "\n", "# Since there's no trait data, we cannot perform trait-based missing value handling\n", "# or judge if the trait is biased. We'll just create a properly formatted dataframe.\n", "cleaned_data = linked_data\n", "\n", "# Remove the dummy trait column if it exists\n", "if 'dummy_trait' in cleaned_data.columns:\n", " cleaned_data = cleaned_data.drop(columns=['dummy_trait'])\n", "\n", "# 5. Validate and save cohort info\n", "note = \"This dataset contains gene expression data but does not contain the specific trait data for glucocorticoid sensitivity as required.\"\n", "is_gene_available = len(normalized_gene_data) > 0\n", "\n", "# Since there's no trait data, the dataset is not usable for associational studies\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available,\n", " is_biased=None, # No trait to evaluate bias\n", " df=cleaned_data,\n", " note=note\n", ")\n", "\n", "# The dataset is not usable for our analyses since it lacks trait data\n", "print(\"Data was determined to be unusable due to missing trait information and was not saved.\")\n" ] }, { "cell_type": "markdown", "id": "a78b75c6", "metadata": {}, "source": [ "### Step 9: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "99107a73", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize gene symbols in the obtained gene expression data\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", "print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n", "\n", "# Save the normalized gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Load the previously saved clinical data\n", "clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)\n", "print(f\"Clinical data shape: {clinical_data.shape}\")\n", "print(\"Clinical data preview:\")\n", "print(clinical_data.head())\n", "\n", "# 3. Link clinical and genetic data using proper sample IDs\n", "# First, transpose gene expression data to have samples as rows\n", "gene_data_t = normalized_gene_data.T\n", "\n", "# The clinical data should have samples as columns - verify sample IDs match\n", "gene_samples = set(gene_data_t.index)\n", "clinical_samples = set(clinical_data.columns)\n", "common_samples = gene_samples.intersection(clinical_samples)\n", "\n", "print(f\"Gene samples: {len(gene_samples)}\")\n", "print(f\"Clinical samples: {len(clinical_samples)}\")\n", "print(f\"Common samples: {len(common_samples)}\")\n", "\n", "# Use the geo_link_clinical_genetic_data function to properly link the data\n", "linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "print(\"Linked data preview (first 5 rows, first 5 columns):\")\n", "if linked_data.shape[1] >= 5:\n", " print(linked_data.iloc[:5, :5])\n", "else:\n", " print(linked_data.head())\n", "\n", "# 4. Handle missing values\n", "print(\"\\nMissing values before handling:\")\n", "print(f\" Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n", "gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n", "if gene_cols:\n", " missing_genes_pct = linked_data[gene_cols].isna().mean()\n", " genes_with_high_missing = sum(missing_genes_pct > 0.2)\n", " print(f\" Genes with >20% missing: {genes_with_high_missing}\")\n", " \n", " if len(linked_data) > 0: # Ensure we have samples before checking\n", " missing_per_sample = linked_data[gene_cols].isna().mean(axis=1)\n", " samples_with_high_missing = sum(missing_per_sample > 0.05)\n", " print(f\" Samples with >5% missing genes: {samples_with_high_missing}\")\n", "\n", "# Handle missing values\n", "cleaned_data = handle_missing_values(linked_data, trait)\n", "print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n", "\n", "# 5. Evaluate bias in trait and demographic features\n", "trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n", "\n", "# 6. Final validation and save\n", "note = \"Dataset contains gene expression data from glucocorticoid sensitivity studies. \"\n", "if 'Age' in cleaned_data.columns:\n", " note += \"Age data is available. \"\n", "if 'Gender' in cleaned_data.columns:\n", " note += \"Gender data is available. \"\n", "\n", "is_gene_available = len(normalized_gene_data) > 0\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=is_gene_available, \n", " is_trait_available=True, \n", " is_biased=trait_biased, \n", " df=cleaned_data,\n", " note=note\n", ")\n", "\n", "# 7. Save if usable\n", "if is_usable and len(cleaned_data) > 0:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " cleaned_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Data was determined to be unusable or empty and was not saved\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }